
Math 216 — Second Midterm
12 November, 2012

This sample exam is provided to serve as one component of your studying for this exam in
this course. Please note that it is not guaranteed to cover the material that will
appear on your exam, nor to be of the same length or difficulty. In particular,
the sections in the text that were covered on this exam may be slightly different from those
covered by your exam.

This material is (c)2017, University of Michigan Department of Mathematics, and released under
a Creative Commons By-NC-SA 4.0 International License. It is explicitly not for distribution on
websites that share course materials.
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1. [16 points] Find real-valued solutions to each of the following, as indicated.

a. [8 points] Find the general solution to y′′+ 4y′+ 5y = 3x− e−2x. The general solution to
y′′ + 4y′ + 5y = 0 is y = c1e

−2x cos(x) + c2e
−2x sin(x).

Solution: There are two parts to the non-homogeneous term, f1(x) = 3x and f2(x) =
−e−2x. Neither of these are part of the homogeneous solution to the problem, so we may
use the Method of Undetermined Coefficients to guess for the first yp1 = Ax+B and for
the second yp2 = Ce−2x. Plugging the first into the differential equation and setting it
equal to f1, we have

0 + 4A+ 5Ax+ 5B = 3x,

so that A = 3/5 and B = −12/25. Similarly, plugging in the second and setting it equal
to f2 we have

4C − 8C + 5C = −1,

so that C = −1. The general solution is thus y = c1e
−2x cos(x) + c2e

−2x sin(x) + 3
5 x −

12
25 − e

−2x.

b. [8 points] Find the solution to y′′ − y = 4ex + 3 cos(x), y(0) = 0, y′(0) = 1. The general
solution to y′′ − y = 0 is y = c1e

x + c2e
−x.

Solution: Using the Method of Undetermined Coefficients, we again have two parts
to the forcing and make two guesses for the parts of yp. For the first part, we would
guess yp1 = Aex, but this is part of the homogeneous solution, and so guess yp1 = Axex

instead. Then y′′p1 = Axex + 2Aex, and plugging in to get the first part of the right-hand
side we have

Axex + 2Aex −Axex = 4ex,

so that A = 2. For the second part we would guess yp2 = B cos(x)+C sin(x), but because
there are no odd derivatives in equation we know C = 0. Then, plugging in to get the
cosine term on the right we have

−B cos(x)−B cos(x) = 3 cos(x),

so that B = −3/2. The general solution to the problem is

y = c1e
x + c2e

−x + 2xex − 3

2
cos(x).

The initial condition y(0) = 0 requires that c1 + c2 = 3/2, and then

y′(x) = c1e
x − c2e−x + 2ex + 2xex +

3

2
sin(x),

so that y′(0) = c1 − c2 + 2 = 1, or c1 − c2 = −1. Adding this to the previous equation,
c1 = 1/4, so that c2 = 5/4. The final solution is thus y = 1

4 e
x + 5

4 e
−x + 2xex− 3

2 cos(x).
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2. [14 points] Use the eigenvalue method to find a real-valued general solution to the matrix

equation x′ = Ax if A =

(
5 2
−1 3

)
.

Solution: We look for x = veλt, where v and λ are the eigenvectors and values of A. Then
we need

|A− λI| =
∣∣∣∣(5− λ 2
−1 3− λ

)∣∣∣∣ = (5− λ)(3− λ) + 2 = λ2 − 8λ+ 17 = (λ− 4)2 + 1 = 0.

Thus λ = 4 ± i. We can use either eigenvalue to find an eigenvector and then separate the
real and imaginary parts of the resulting x to write the real-valued solution. With λ = 4 + i,
v satisfies (

5− (4 + i) 2
−1 3− (4 + i)

)
v = 0,

so that, with v =
(
v1 v2

)T
, we have two equations which are constant multiples of (1 −

i)v1 + 2v2 = 0. Letting v1 = 2 we have v2 = −1 + i, and a complex valued solution to the
problem is

x =

(
2

−1 + i

)
e4t(cos(t) + i sin(t)) =

(
2 cos(t)

− cos(t)− sin(t)

)
e4t + i

(
2 sin(t)

cos(t)− sin(t)

)
e4t.

A real-valued general solution is therefore

x = c1

(
2 cos(t)

− cos(t)− sin(t)

)
e4t + c2

(
2 sin(t)

cos(t)− sin(t)

)
e4t.

Note that an alternate formulation is to find v =
(
−1∓ i 1

)
, so that

x = c1

(
− cos(t) + sin(t)

cos(t)

)
e4t + c2

(
− cos(t)− sin(t)

sin(t)

)
e4t.
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3. [12 points] Consider the system

x′1 = a x1 + 2x2

x′2 = 4x1 + x2

(where a is a constant) and the linear constant-coefficient differential equation given in operator
form by (D2 − 4D − 5)[y] = 0.

a. [6 points] If the system and differential equation are equivalent, what is the value of a?

Solution: We know that if these are equivalent we will obtain the differential equation
(with y = x1 or y = x2) if we eliminate x2 or x1 from the system. Writing the system in
operator form, we have

(D − a)[x1]− 2x2 = 0

−4x1 + (D − 1)[x2] = 0

Operating on the first by (D − 1), multiplying the second by 2, and adding, we have

(D − 1)(D − a)[x1]− 8x1 = (D2 − (a+ 1)D + (a− 8))[x1] = 0.

Comparing coefficients with the operator for the given differential equation, we must
have a = 3.
We can, of course, do this without using operator notation. From the first equation,
x2 = 1

2(x′1 − a x1), so that x′2 = 1
2(x′′1 − a x′1). Plugging into the second equation,

1
2(x′′1 − a x′1) = 4x1 + 1

2(x′1 − a x1), so x′′1 − a x′1 = 8x1 + x′1 − a x1, and

x′′1 − (a+ 1)x′1 + (a− 8)x1 = 0.

To no ones surprise this is the same as we found before.

b. [6 points] The general solution to (D2 − 4D − 5)[y] = 0 is y = c1e
5t + c2e

−t. Using this,
what is the general solution to the given system of differential equations?

Solution: This is the solution for either x1 or x2. Taking it as x1, we have x1 =
c1e

5t + c2e
−t. Then, from the first equation, with a = 3,

x2 =
1

2

(
x′1 − 3x1

)
=

1

2

(
5c1e

5t − c2e−t − 3c1e
5t − 3c2e

−t) = c1e
5t − 2c2e

−t.

Alternately, if we take x2 = c1e
5t + c2e

−t, we have from the second equation

x1 =
1

4

(
x′2 − x2

)
=

1

4

(
5c1e

5t − c2e−t − c1e5t − c2e−t
)

= c1e
5t − 1

2
c2e
−t.
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4. [12 points] Consider the differential equation x′′ + a x′ + b x =
A0 cos(ωt), modeling dispacement x of the mass in the mass-
spring system shown to the right. In this equation, a, b, A0 and
ω are constant parameters.

0

a. [6 points] If a representative graph of x as a function of
time t is shown in the figure to the right, can you determine
if any of a, b, A0 or ω must be zero or must be non-zero?
Must any of a, b, A0 or ω be related in any way? Can you
tell what value any of them must have?

Solution: This figure shows resonance, so we know a = 0,
b = ω2 and A0 6= 0. We are unable to tell any specific
values for these.

0

oscillation period π

b. [6 points] If a representative graph of x as a function of time
t is shown in the figure to the right, can you determine if
any of a, b, A0 or ω must be zero or must be non-zero?
Must any of a, b, A0 or ω be related in any way? Can you
tell what value any of them must have?

Solution: This figure shows a transient motion followed
by a steady-state oscillation, so we know a, b > 0 and
A0 6= 0. The frequency ω determines the period of the
steady state oscillation, so ω = 2.
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5. [16 points] Identify each of the following as true or false. Give a one-sentence explanation for
your response in each case.

a. [4 points] Euler’s method applied to the system x′ =

(
t 0
1 t2

)
x, x(0) =

(
0
1

)
gives, after

2 steps with h = 0.5, x(1) ≈
(

0
1.25

)
.

True False

Solution: Because x′(0) =

(
0 0
1 0

)(
0
1

)
= 0, Euler’s method gives x(0.5) ≈ x(0); then

x′(0.5) ≈
(

0.5 0
1 0.25

)(
0
1

)
=

(
0

0.25

)
, and x(1) ≈

(
0
1

)
+ 0.5

(
0

0.25

)
=

(
0

1.125

)
.

b. [4 points] Given that x1 =

(
et

3et

)
and x2 =

(
2et

6et

)
are solutions to x′ = Ax for some

2× 2 matrix A, a general solution is x = c1x1 + c2x2.

True False

Solution: The two vectors x1 and x2 are not linearly independent, so this cannot be a
general solution.

c. [4 points] If x1(t), x2(t), . . . , xn(t) are solutions to a system of n linear first-order

differential equations, and if x1(0) =


1
0
0
...
0

, x2(0) =


0
1
0
...
0

, . . . , xn(0) =


0
0
0
...
1

, then a

general solution to the system is given by x = c1x1 + c2x2 + · · ·+ cnxn.

True False

Solution: Note that W [x1(0), . . . ,xn(0)] = 1; thus the xj are linearly independent and
the general solution is as given.

d. [4 points] If one or more of the eigenvalues of the constant matrix A are zero, the linear
system x′ = Ax has no solution.

True False

Solution: Because of the existence theorem we know that there is a solution.
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6. [15 points] Consider the phase portrait shown
to the right, which is for a system x′ = f(x, y),
y′ = g(x, y).

a. [3 points] Explain why this system must be
nonlinear.

Solution: If f and g are linear there is only
one critical point; this system has two (at
(0, 0) and (2, 2)), and must therefore have
some nonlinearity.
Alternately, we know for a linear system we
can rewrite this as x′ = Ax and solve to
find a solution that will have nodal, saddle
point, or spiral point behavior centered at
a critical point. Here we see two types of
behavior: a spiral at (2, 2) and a saddle at
(0, 0), which isn’t possible for a linear sys-
tem.

b. [8 points] Now suppose that the system is given by

x′ = a y − y2

y′ = x+ b y

What are the parameters a and b? Why?

Solution: The critical points shown in the phase portrait are (0, 0) and (2, 2). We can
find a and b by using the latter of these. At critical points x′ = y′ = 0; thus, if y = 2 the
first equation gives 0 = 2a − 4, so that a = 2. Similarly in the second, with x = 2 and
y = 2, 0 = 2 + 2b, so that b = −1.

c. [4 points] For each of the critical points of the system shown in the figure above, indicate
whether it appears to be unstable, stable, or asymptotically stable; and whether it is a
node, saddle point, center or spiral point.

Solution: The point (0, 0) is a(n unstable) saddle point; the point (2, 2) is an asymp-
totically stable spiral point (a spiral sink).
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7. [15 points] The figure to the right shows two (hypothetical) skydivers,
with a spring connecting them. We assume that the mass of the first,
m1, is less than the mass of the second, m2. The distances that each
has fallen are x1 and x2, and the spring constant is k. Let L be the
equilibrium length of the spring. Then the system is modeled as

x′′1 =
k

m1
(−x1 + x2) +

(
g − kL

m1

)
x′′2 =

k

m2
(x1 − x2) +

(
g +

kL

m2

)
.

a. [3 points] If we write this as a matrix equation x′′ = Ax + f , what
are x, A and f?

Solution: These are

x =

(
x1
x2

)
, A =

(
−k/m1 k/m1

k/m2 −k/m2

)
, and f =

(
g − kL/m1

g + kL/m2

)
.

b. [4 points] Now suppose that we’re interested in finding the solution to the homogeneous
problem associated with this system. If we take x = veωt, what equation must v and ω
satisfy? How are v and ω related to the matrix A that you found above?

Solution: Plugging x = veωt into the homogeneous problem x′′ = Ax, we get ω2veωt =
Aveωt. We may divide out the exponential to obtain ω2v = Av, so that ω2 = λ, the
eigenvalues of A, and v are the corresponding eigenvectors.

c. [8 points] Now suppose that the eigenvalues and eigenvectors of the matrix A you found

in (a) are λ1 = 0, with v1 =

(
1
1

)
and λ2 = −4 with v2 =

(
3
1

)
. Write the complementary

homogeneous solution to your system.

Solution: From the work above, if λ = 0 we know that ω = 0 (twice), and we get the
two solutions x1 = v1 and x2 = v1t. If λ = −4 we have ω = ±2i, so that we gain the
two additional solutions x3 = v2 cos(2t) and x4 = v2 sin(2t). The general solution is
therefore

x = (c1 + c2t)

(
1
1

)
+ (c3 cos(2t) + c4 sin(2t))

(
3
1

)
.


