
Math 216 — Final Exam
14 December, 2012

This sample exam is provided to serve as one component of your studying for this exam in
this course. Please note that it is not guaranteed to cover the material that will
appear on your exam, nor to be of the same length or difficulty. In particular,
the sections in the text that were covered on this exam may be slightly different from those
covered by your exam.

This material is (c)2017, University of Michigan Department of Mathematics, and released under
a Creative Commons By-NC-SA 4.0 International License. It is explicitly not for distribution on
websites that share course materials.
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1. [12 points] For each of the following the given figure is a phase portrait for a system x′ =
Ax, where A is a constant 2 × 2 matrix. For each select the correct characterization of the
eigenvalues of A and fill in the requested information about an eigenvector of this matrix.

a. [4 points]

a 0 1
b

c

d

The eigenvalues of A could be (circle one):
λ1 = 1, λ2 = 2; λ1 = −1, λ2 = 2;
λ1 = −1, λ2 = −2; λ1,2 = 1± i;
λ1,2 = −1± i

If possible, give one eigenvector of A (if it is not possible, write “n/a”): v =
(
1 0

)T
Solution: There is one obvious straight line trajectory (the x-axis), so the eigenvalues

and vectors must be real, and one eigenvector must be v =
(
1 0

)T
. Both eigenvalues

are negative because all trajectories approach the origin.

b. [4 points]

a 0 1
b

c

d

The eigenvalues of A could be (circle one):

λ1 = 1, λ2 = 2; λ1 = −1, λ2 = 2;
λ1 = −1, λ2 = −2; λ1,2 = 1± i;
λ1,2 = −1± i

If possible, give one eigenvector of A (if it is not possible, write “n/a”): v =
(
0 1

)T
Solution: This is a saddle point, so there are two real eigenvalues, one positive and
one negative. The positive eigenvalue corresponds to the vertical trajectories along the

eigenvector v =
(
0 1

)T
.

c. [4 points]

a 0 1
b

c

d

The eigenvalues of A could be (circle one):

λ1 = 1, λ2 = 2; λ1 = −1, λ2 = 2;
λ1 = −1, λ2 = −2; λ1,2 = 1± i;
λ1,2 = −1± i

If possible, give one eigenvector of A (if it is not possible, write “n/a”): v =
(
1 0

)T
Solution: This is a nodal source, so there are two real eigenvalues, both positive. One of

eigenvectors lies along the x-axis, so it is v =
(
1 0

)T
, and is associated with the smaller

of the eigenvalues.
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2. [14 points] A model for a population that is susceptible to a disease is the SI (Susceptible,
Infected) model. With a few simplifying assumptions, we may model smallpox infections in a
population with the SI model

S′ = −4SI + k(1− S − I)

I ′ = 4SI − I,

where S is the fraction of the total population that is susceptible to smallpox and I is the
fraction who are infected by the disease. (The remainder of the population is recovered.)
We shall consider this with k = 2, in which case the equilibrium solutions to the system are
(S, I) = (1, 0) and (S, I) = (1/4, 1/2).

a. [5 points] Find the linearization of this system at the critical point (1, 0). Solve the linear
system that you obtain.

Solution: The Jacobian for the system is J =

(
−4I − 2 −4S − 2

4I 4S − 1

)
, which at (1, 0) is

J(1, 0) =

(
−2 −6
0 3

)
. Thus, if u =

(
u
v

)
is a small displacement from (1, 0), we have

u′ =

(
−2 −6
0 3

)
u. Eigenvalues of J(1, 0) are λ = −2, 3; for λ = −2, v =

(
1 0

)T
and

for λ = 3, v =
(
−6 5

)T
. Thus

u = c1

(
1
0

)
e−2t + c2

(
−6
5

)
e3t.

b. [4 points] Find the linearization of this system at the critical point (1/4, 1/2). Determine
the type of critical point this is (that is, whether it is a node, saddle or spiral point, and
its stability).

Solution: Using the Jacobian from above and again taking u to be the equilibrium

solution we have u′ =

(
−4 −3
2 0

)
u. Eigenvalues of the coefficient matrix are given by

(−4− λ)(−λ) + 6 = λ2 + 4λ+ 6 = (λ+ 2)2 + 2 = 0, so that λ = −2± i
√

2. Thus this is
an asymptotically stable spiral point.
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Problem 2, continued

c. [5 points] Based on your work in (a) and (b), sketch a qualitatively reasonable phase
portrait (including equilibrium solutions and representative trajectories) for this system
on the domain 0 ≤ S ≤ 1 and 0 ≤ I ≤ 1. Based on your work on this part of the
problem and on (a) and (b), how do you expect the populations of susceptible and infected
individuals to evolve if we start with the initial condition (S, I) = (0.8, 0.01)?

Solution: At (1, 0) we have a saddle point with trajectories converging along the x (S)
axis, and diverging along a line with slope −5/6, as shown in the figure below.

At (1/4, 1/2) the direction of the spiral is suggested by the Jacobian: if we start directly

above the equilibrium point, u′ is proportional to J(1/4, 1/2)
(
0 1

)T
=
(
−4 0

)T
, so

trajectories are moving counter-clockwise around, and converging to, the equilibrium
point. This gives the behavior shown below.

Combining these, we have the phase plane shown below.

1

a

Thus we expect a trajectory starting at (0.8, 0.01) to initially move to the right and up
(that is, S and I both increase), then to have decreasing S and increasing I until they
are on the order of S = 1/4 with I > 1/2. The populations will then oscillate around
the values S = 1/4 and I = 1/2, converging to the equilibrium point. In the long term
we expect to see (S, I) = (1/4, 1/2).
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3. [12 points] Use Laplace transforms to solve the initial value problem

y′′ + y =

{
1 t < 2

0 t ≥ 2
, y(0) = 3, y′(0) = 0.

Solution: Note that we can write the differential equation as y′′ + y = 1− u(t− 2). Trans-
forming both sides of this, we have

L{y′′ + y} = L{1− u(t− 2)}, or

(s2Y − 3s) + Y =
1

s
− e−2s

s
,

where Y = L{y} is the Laplace transform of y(t). Thus

Y =
3s

s2 + 1
+

1

s(s2 + 1)
− e−2s

s(s2 + 1)
.

To invert this we need the inverse transforms of each term, but note that the third term will
follow directly from the second from the inverse transform rule for e−asF (s). The first term
inverts using the transform for cos kt, so that

L−1{ 3s

s2 + 1
} = 3 cos t.

Then we note that L−1{ 1
s2+1
} = sin t, so that by the transform rule for F (s)/s we have

L−1{ 1

s(s2 + 1)
} =

∫ t

0
sin τ dτ = 1− cos t.

Finally, using this we have

L−1{ e−2s

s(s2 + 1)
} = u(t− 2)(1− cos(t− 2)).

Thus the solution is

y(t) = L−1{Y } = 3 cos t+ (1− cos t)− u(t− 2)(1− cos(t− 2))

= 1 + 2 cos t− u(t− 2)(1− cos(t− 2)).
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4. [12 points] Fill in the blanks for each of the following inverse Laplace transforms. Show enough
work to indicate how you obtained your answer.

a. [4 points] L−1
{

1

s2 + 8s+ 16

}
= L−1

{
1

(s+ 4)2

}
= t e−4t

Solution: Note that L−1{1/s2} = t. Thus, by the transform rule L{eatf(t)} = F (s−a),
we have L−1{ 1

(s+4)2
} = t e−4t.

b. [4 points] L−1
{

3s+ 1

(s+ 2)2 + 16

}
= 3 e−2t cos(4t) + −5 e−2t sin(4t)/4

Solution: We note that 3s+1
(s+2)2+16

= 3(s+2)−5
(s+2)2+16

. The first term in the numerator

gives the first term in the expression provided, and we see that the second then gives
L−1{− 5

(s+2)2+16
} = −5

4 e
−2t sin(4t).

c. [4 points] L−1
{

2− e−4s

s2 + 9

}
=

2

3
sin(3t) + −u(t−4) sin(3(t−4))/3

Solution: The first term in the inverse transform tells us f(t) = 1
3 sin(3t) for F (s) =

1
s2+9

. The answer then is derived easily from the rule for e−as F (s): L−1{− e−4s

s2+9
} =

−1
3 u(t− 4) sin(3(t− 4)).
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5. [14 points] Solve each of the following, as indicated.

a. [7 points] Find the general solution to xz′(x) = z(x) + 5x4.

Solution: This is a first-order linear equation, so we may use the method of integrating
factors. We rewrite the equation as z′ − 1

x z = 5x3 to see that the integrating factor

is µ(x) = e−
∫
1/x dx = 1/x, so that we have (z/x)′ = 5x2. Integrating both sides,

z/x = 5
3 x

3 + C, so that z = 5
3 x

4 + Cx.

b. [7 points] Find the solution to the initial value problem (1 + x)y′ = 3y2, y(0) = 2.

Solution: This is a nonlinear but separable first-order equation. Separating variables,
we have

∫
y′/y2 dy =

∫
3/(1 + x) dx, so that

−1

y
= 3 ln |1 + x|+ C,

and

y = − 1

3 ln |1 + x|+ C
.

The initial condition y(0) = 2 requires that C = −1/2, so that

y = − 1

3 ln |1 + x| − 1
2

=
2

1− 6 ln |1 + x|
.
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6. [14 points] Consider the differential equation d2z
dt + 2dz

dt + z = 0.

a. [6 points] Find a general real-valued solution to this differential equation.

Solution: Let z = ert. Then r2 + 2r + 1 = (r + 1)2 = 0, so r = −1 twice, and we know
the general solution is

z = c1e
−t + c2te

−t.

b. [3 points] Rewrite the equation as a linear system of first order equations, in the form
x′ = A x.

Solution: Let x1 = z and x2 = z′. Then we have x′1 = x2 and x′2 = −x1 − 2x2, or(
x1
x2

)′
=

(
0 1
−1 −2

)(
x1
x2

)
.

c. [5 points] Use your solution from (a) to write the general solution for x in your system
in (b).

Solution:

x =

(
z
z′

)
= c1

(
1
−1

)
e−t + c2

(
t

1− t

)
e−t.

(As a side note, we observe that this is of the form c1v1e
−t + c2(v2 + v1 t)e

−t—that is,
that the repeated root results in a term linear in t—much as we might expect from our
result in (a).)
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7. [10 points] Values from a cubic polynomial f(y) are shown in the table below.
y = −2 −1 0 1 2

f(y) = −3.5 1.25 0 −1.25 3.5

a. [5 points] How many equilibrium solutions are there for the differential equation dy
dx =

f(y), where f(y) is represented in the table above? What might these solutions be?

Solution: There is an equilibrium at y = 0; because f(y) is continuous we know that
there must be two other equilibria, one between y = −2 and y = −1 and the other
between y = 1 and y = 2. We therefore know that there are three equilibrium solutions,
and might guess their values to be y = 0 and y = ±1.5.

b. [5 points] Identify the stability of each of the equilibrium solutions you found in (a), and
sketch a phase diagram for the differential equation.

Solution: We can see that y = ±1.5 are unstable, while y = 0 is stable. The phase
diagram is shown below.

−1.5 0 1.5
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8. [12 points] The figure to the right shows the solution to
the system of first-order equations(

x
y

)′
=

(
−1 a
−2 −1

)(
x
y

)
,

where a is a constant. In the figure, x is given by the solid
curve and y by the dashed curve, and k is a constant we
specify later.

a. [4 points] Given these solution curves, is a positive, negative, zero, or can we not tell?

Solution: Because the solution curves are oscillatory, we know that the eigenvalues of
the coefficient matrix must be complex. The eigenvalues satisfy the equation∣∣∣∣(−1− λ a

−2 −1− λ

)∣∣∣∣ = (λ+ 1)2 + 2a = 0.

Thus λ = −1 ±
√
−2a. This will have complex solutions for λ if a > 0. Thus we know

that a > 0.

b. [4 points] If we know that k = π, what is a?

Solution: This tells us that the pseudoperiod of the decaying oscillation seen is π, so
that λ = α± 2i. From (a), we have λ = −1± i

√
2a, so a = 2.

c. [4 points] Sketch a phase portrait in the x-y plane for this system, showing the solution
trajectory illustrated in the figure given in the problem statement.

Solution: The trajectory shown starts at (x, y) = (0, 1). We know that this is spiral
trajectory that will approach the origin, and initially x increases and y decreases, so it
must be a clockwise spiral. (This is also evident if we take (x, y) = (0, 1) and calculate
(x, y)′ = (2,−1) from the system.) This gives the phase portrait shown below.

a b c

d

e

f
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Do not use this page for work on the problems on the final exam. Any work you
do here will not be considered when grading your exam.

Some formulas which may or may not prove useful

• Euler’s, improved Euler and Runge Kutta methods iteration steps for x′ = f(t, x) (x and f
scalar or vector):
Euler: xj+1 = xj + hf(tj , xj)
Improved Euler: xj+1 = xj + h

2 (f(tj , xj) + f(tj+1, u)), where u = xj + hf(tj , xj)

Runge Kutta: xj+1 = xj+ h
6 (k1+2k2+2k3+k4), where k1 = f(tj , xj), k2 = f(tj+ h

2 , xj+ h
2k1),

k3 = f(tj + h
2 , xj + h

2k2), and k4 = f(tj+1, xj + hk3)

• Some integration formulas:∫
1/
√
a2 − x2 dx = arcsin(x/a) + C

∫
1/(a2 + x2) dx = arctan(x/a)/a+ C∫

sin2(x) dx = x/2− sin(2x)/4 + C
∫

cos2(x) dx = x/2 + sin(2x)/4 + C∫
tan2(x) dx = tan(x)− x+ C.

• Laplace transforms:

f(t) F (s) f(t) F (s)

1 1
s f (n)(t) snF (s)− sn−1f(0)− · · · − f (n−1)(0)

tn n!
sn+1

∫ t
0 f(τ) dτ F (s)

s
eat 1

s−a eatf(t) F (s− a)

sin kt k
s2+k2

f(t) ∗ g(t) F (s) ·G(s)

cos kt s
s2+k2

−tf(t) F ′(s)

u(t− a) e−as

s
f(t)
t

∫∞
s F (σ) dσ

δ(t− a) e−as u(t− a)f(t− a) e−asF (s)


