
Math 216 — Second Midterm
17 November, 2016

This sample exam is provided to serve as one component of your studying for this exam in
this course. Please note that it is not guaranteed to cover the material that will
appear on your exam, nor to be of the same length or difficulty. In particular,
the sections in the text that were covered on this exam may be slightly different from those
covered by your exam.

This material is (c)2016, University of Michigan Department of Mathematics, and released under
a Creative Commons By-NC-SA 4.0 International License. It is explicitly not for distribution on
websites that share course materials.
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Some Laplace Transforms

f(t) F (s)

1. 1
1

s
, s > 0

2. eat
1

s− a
, s > a

3. tn
n!

sn+1

4. sin(at)
a

s2 + a2

5. cos(at)
s

s2 + a2

6. uc(t)
e−cs

s

7. δ(t− c) e−cs

A. f ′(t) s F (s)− f(0)

A.1 f ′′(t) s2F (s)− s f(0)− f ′(0)

A.2 f (n)(t) snF (s)− · · · − f (n−1)(0)

B. tnf(t) (−1)nF (n)(s)

C. ec tf(t) F (s− c)

D. uc(t) f(t− c) e−cs F (s)

E. f(t) (periodic with period T )
1

1− e−Ts

∫ T

0
e−stf(t) dt
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1. [16 points] Find real-valued solutions for each of the following, as indicated. (Note that
minimal partial credit will be given on this problem.)

a. [8 points] Find the general solution to y′′ + 4y′ + 13y = 26t.

b. [8 points] Solve y′′ + 6y′ + 8y = e−2t, y(0) = 0, y′(0) = 0.
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2. [14 points] Find each of the following. (Note that minimal partial credit will be given on this
problem.)

a. [7 points] L{f(t)}, if f(t) =

1− t, 0 ≤ t < 1

0, otherwise

b. [7 points] Y (s) = L{y(t)}, if y′′ + 9y = uπ(t) cos(4(t− π)), y(0) = 1, y′(0) = 2.
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3. [15 points] A chemical reaction with two reagents (chemicals) in amounts r1 and r2 that
may be converted from one to the other may be modeled the system of first-order differential
equations

r′1 = −3r1 + 9r2

r′2 = k r1 − r2 + f(t),

where f(t) is the rate at which the second reagent is being added to the reaction and k is a
constant.

a. [5 points] Write down the second-order linear equation which has r1 as its solution.

12 14 16 18 20
t

r1

b. [5 points] If f(t) = cos(ωt) is the dashed curve in the figure below, for what values of k,
if any, could the long-term behavior of r1 be that shown by the solid curve? Explain your
answer.

c. [5 points] If f(t) = A0, a constant, for what values of k, if any, could the phase portrait
for this system be similar to that shown in the figure below? Explain your answer.
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4. [13 points] Consider the RLC circuit shown to the right, below. This is modeled by y′′+k y′+
2y = g(t), where g(t) is the derivative of the input voltage and 0 < k < 2

√
2 is proportional to

the resistance of the resistor.

~

a. [9 points] If g(t) = 4 cos(t), find the steady state response to the input.
Write your answer in the form R cos(t− α).

1 2 3 4 5
ω

0.5

1

1.5

2

R

b. [4 points] The amplitude of the steady state response to the forcing g(t) = 4 cos(ωt) is
shown below, as a function of ω. What is the value of k in the equation? Why?
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5. [14 points] For the first two of the following, identify each as true or false, by circling “True”
or “False” as appropriate, and provide a short (one sentence) explanation indicating why you
selected that answer. For the last give a short answer explaining the indicated question.

a. [4 points] For some constant ω and k, a solution to the mechanical system y′′+2y′+ky =
cos(ωt) could be that shown to the right.

1 2 3 4 5
t

0.5

1.0

1.5
y

True False

b. [4 points] Let F (s) = s2+1
s2+3s+5

. There is some piecewise continuous function f(t), of
exponential order, for which L{f(t)} = F (s).

True False

c. [6 points] Your friends Anna and Andrew are solving the two problems y′′+0.1y′+y = 0,
y(0) = 0, y′(0) = 1 and z′′ + 0.1z′ + z = δ(t − 3), z(0) = 0, z′(0) = 0. Anna thinks that
z(t) = y(t− 3), while Andrew thinks they are different. Explain why they are both partly
correct.
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6. [14 points] Find solutions to each of the following, as indicated.

a. [7 points] Find the general solution to y′′+y′ =
1

1 + et
. (Hint:

∫
1

1+et dt = t− ln(1 + et).)

b. [7 points] Find the solution to y′′ − y′ = u2(t)− u3(t), y(0) = 0, y′(0) = 0
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7. [14 points] Recall the linearized version of our laser model,

u′ = −γ(Au+ v)

v′ = (A− 1)u.

Consider the case of constant forcing (A = a constant) and the initial conditions u(0) = u0,
v(0) = 0.

a. [6 points] Find a system of algebraic equations for U(s) = L{u(t)} and V (s) = L{v(t)}.

b. [4 points] Solve your system from (a) to find U(s) and V (s).
(If you are unable to solve (a), consider the system (s+a)U+bV = u0, −cU+(s+a)V = 0.)

c. [4 points] Recall that in the lab we solved the characteristic equation λ2+γAλ+γ(A−1) =
0, finding λ2 + γAλ+ γ(A− 1) = (λ+ 1

2 λA)2 + (−1
4γ

2A2 + γ(A− 1)) = (λ+µ)2 + ν2 = 0
(so that λ = −µ± iν). Use this to rewrite your solutions in (b) in terms of µ and ν. Find
u(t) = L−1{U(s)} and v(t) = L−1{V (s)} in terms of µ and ν.
(If you are stuck, assume the denominator of your U and V is of the form (s+ a)2 + b2.)
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This page provided for additional work.
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This page provided for additional work.


