
Math 216 — First Midterm
13 October, 2016

This sample exam is provided to serve as one component of your studying for this exam in
this course. Please note that it is not guaranteed to cover the material that will
appear on your exam, nor to be of the same length or difficulty. In particular,
the sections in the text that were covered on this exam may be slightly different from those
covered by your exam.

This material is (c)2016, University of Michigan Department of Mathematics, and released under
a Creative Commons By-NC-SA 4.0 International License. It is explicitly not for distribution on
websites that share course materials.



Math 216 / Exam 1 (13 October, 2016) / (c)2016 U Michigan Math Dept, under a CC By-NC-SA International License page 2

1. [14 points] Find real-valued solutions for each of the following, as indicated. (Note that
minimal partial credit will be given on this problem.)

a. [7 points] Find the general solution to y′ = sin(t)− sin(t)

cos(t)
y.

Solution: This is linear and not separable, so we must use an integrating factor. The
equation may be rewritten as

y′ +
sin(t)

cos(t)
y = sin(t),

so the integrating factor is µ = e
∫ sin(t)

cos(t)
dt

= e− ln(| cos(t)|) = 1/ cos(t) (we may drop the
± because of the constant of integration which will divide out from the equation after
multiplication by µ). Multiplying through by this, we have

(
1

cos(t)
y)′ =

sin(t)

cos(t)
,

so that after integrating both sides we have

1

cos(t)
y = − ln(| cos(t)|) + C,

and y = − cos(t) ln(| cos(t)|) + C cos(t).

b. [7 points] Find a solution, explicit or implicit, for y, if

y′ =
1 + sin(t)

1 + cos(y)
, y(π) = 0.

Solution: This is nonlinear, but separable. Separating variables, we have

(1 + cos(y))y′ = 1 + sin(t).

Integrating, we have y+ sin(y) = t− cos(t) +C. Applying the initial condition, we have
0 + 0 = π + 1 + C, so C = −1− π, and our (implicit) solution is

y + sin(y) = t− cos(t)− (1 + π).
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2. [16 points] Find real-valued solutions to each of the following, as indicated. (Note that minimal
partial credit will be given on this problem.)

a. [8 points] The general solution to the system x′1 = 2x1 + 3x2, x
′
2 = x1 + 4x2

Solution: This is x′ = Ax for A =

(
2 3
1 4

)
. We know solutions will be of the form

x = v eλt, where v and λ are the eigenvectors and eigenvalues of A. Solving for these,
we require

∆ = det(A− λI) = det(

(
2− λ 3

1 4− λ

)
= (λ− 2)(λ− 4)− 3

= λ2 − 6λ+ 5 = (λ− 5)(λ− 1) = 0.

Thus λ = 1 or λ = 5. If λ = 1, the eigenvector v =

(
v1
v2

)
satisfies v1 + 3v2 = 0, so that

v =

(
3
−1

)
. Similarly, if λ = 5, the eigenvector satisfies v1− v2 = 0, and v =

(
1
1

)
. Thus

the general solution is

x =

(
x1
x2

)
= c1

(
3
−1

)
et + c2

(
1
1

)
e5t.

b. [8 points] The solution to

(
x1
x2

)′
=

(
1 2
−1 −1

)(
x1
x2

)
, with

(
x1(0)
x2(0)

)
=

(
4
−2

)
.

Solution: Again, we look for the eigenvalues and eigenvectors of the coefficient matrix.
We have ∆ = (1−λ)(−1−λ) + 2 = λ2 + 1 = 0, so that λ = ±i. If λ = i, the eigenvector
v satisfies (

1− i 2
−1 −1− i

)(
v1
v2

)
=

(
0
0

)
,

so that from the first row we see we may take v1 = 2 and v2 = −1 + i. Thus a complex-
valued solution

x =

(
2

−1 + i

)
(cos(t) + i sin(t)) =

(
2 cos(t) + 2i sin(t)

− cos(t)− sin(t) + i(cos(t)− sin(t))

)
.

The real and imaginary parts of this are linearly independent solutions to the system,
and so a real-valued general solution is

x = c1

(
2 cos(t)

− cos(t)− sin(t)

)
+ c2

(
2 sin(t)

cos(t)− sin(t)

)
.

To get the desired initial condition, we take c1 = 2 and c2 = 0, so that

x =

(
4 cos(t)

−2(cos(t) + sin(t))

)
.
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3. [12 points] Consider an abandoned zero-entry pool as suggested by the figure to the right,
below. (The front face of the pool is shown with bold lines.) In the figure, w, L and h are the
fixed dimensions of the pool, and x and y characterize the part that is filled with water. The
corresponding volume of the filled section is V = 1

2 w xy.

x

y

h

wLa. [8 points] If the pool slowly evap-
orates at a volumetric rate propor-
tional to its top surface area, write
a differential equation for the volume
of the water in the pool.

Solution: We have dV
dt = −αxw.

By similar triangles, x/y = L/h, so
that y = hx/L. Thus we can relate
x and V using the volume formula
provided: V = 1

2 w xy = hw
2L x

2, and

so x =
√

2L
hw

√
V . Thus

dV

dt
= −α

√
2Lw

h

√
V = −k

√
V .

b. [4 points] Solve your equation from (a) with the initial condition V (0) = V0. At what
time is the pool finally empty? (If you are unable to find an equation in (a), you may
proceed with the equation V ′ = −k

√
V .)

Solution: We solve by separating variables: V −1/2 V ′ = −k, so that on integrating both
sides of the equation we have 2

√
V = −kt+ C ′, so that V = (C − kt/2)2. Applying the

initial condition, V (0) = C2 = V0, so that V = (
√
V0 − kt/2)2. The pool is empty when

t = 2

√
V0
k

= 2

√
V0hw

Lα2
.
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4. [18 points] A model for a population with harvesting (e.g., a population of fish from which
fish are caught) is P ′ = f(P ) = P (1 − P

K ) −H, where K is a limiting population and H the
harvesting rate. P and K are measured in some unit—perhaps millions of pounds of fish.
Suppose that for some value of K, the graphs of f(P ) are as in the graph shown below.

H=0
H=1/2
H=1
H=3/2
H=2

1 2 3 4 5
P

-3

-2

-1

0

1

f(P)a. [6 points] Plot phase lines for this
equation when H = 0, H = 1 and
H = 2. For each, identify all equilib-
rium solutions and their stability.

H =0

H =2

=1H

P

P

P

0 4

2

Solution: The phase lines are shown
to the right. For H = 0, there are
two equilibrium solutions, P = 0
and P = 4, with P = 4 being asymp-
totically stable and P = 0 unstable.
For H = 1, there is a single equilib-
rium solution, P = 2, which is semi-
stable (or, unstable). For H = 2
there are no equilibrium solutions,
and all initial conditions strictly de-
crease. (Note that there is some am-
biguity in what happens for P < 0,
which is not shown in the graph and
non-physical. Here we sketch the
behaviors there by using the equa-
tion, which is defined for P < 0.)

b. [5 points] Sketch qualitatively accurate solution curves for the case H = 0. Include
enough initial conditions to show all solution behaviors.

Solution: Given the phase line above, we get the curves shown below. Note that the
concavity of solutions changes at P = 2.

P

t

4

0



Math 216 / Exam 1 (13 October, 2016) / (c)2016 U Michigan Math Dept, under a CC By-NC-SA International License page 6

Problem 4, continued. Instructions are reproduced here:
A model for a population with harvesting (e.g., a population of fish from which fish are caught)
is P ′ = f(P ) = P (1− P

K )−H, where K is a limiting population and H the harvesting rate. P
and K are measured in some unit—perhaps millions of pounds of fish. Suppose that for some
value of K, the graphs of f(P ) are as in the graph shown below.

H=0
H=1/2
H=1
H=3/2
H=2

1 2 3 4 5
P

-3

-2

-1

0

1

f(P)

c. [4 points] This problem and your work on it provide an example of a model with a
bifurcation. Draw the bifurcation diagram for this on the axes provided below.

Solution: The bifurcation diagram is below. The curve shown gives the two branches
of a square root, with a base at H = 2.

P

H2

4

0

d. [3 points] Explain what your work in the preceding indicates about the long-term survival
of the harvested population (fish).

Solution: This indicates that if the harvesting is too high, the population will crash and
go to zero. If it is low enough there is a stable larger population and things will continue
as one might desire. The transition occurs at H = 1; below this, there is a stable “large”
population of fish.
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5. [16 points] Consider the system
x′ = Ax, (1)

for some real-valued, constant, 2 × 2 matrix A. Suppose that one solution to (1) is x =(
−1
1

)
e−t. Identify each of the following as true or false, by circling “True” or “False” as

appropriate, and provide a short (one sentence) explanation indicating why you selected that
answer.

a. [4 points] A possible component plot of solutions to (1) is

x1

x2
Solution: This cannot be a correct plot, because
the solutions x1 and x2 are decaying oscillatory so-
lutions; given one solution with only real exponentials,
we know that there can be no oscillatory solutions.

True False

b. [4 points] The general solution to (1) could be x = c1

(
1
−1

)
e−t + c2

(
0
1

)
et.

True False

Solution: This could certainly be correct; we need only that the second eigenvalue of

A be λ = 1 with corresponding eigenvector v =

(
0
1

)
. (The reversed sign on the first

solution is immaterial, as the eigenvectors are only unique up to a constant multiple.)

c. [4 points] The equation Aw = −w has infinitely many solutions w.

True False

Solution: Because we know one solution to the system is the x given, we know that
one of the eigenvalues of A is λ = −1. This is just the eigenvalue problem with λ = −1
plugged in, so we know that there are an infinite number of solutions.

d. [4 points] An eigenvalue of the matrix A could be λ = 1 + i.

True False

Solution: We know that λ = −1 is one eigenvalue, that there are at most two (because
A is 2× 2), and the complex eigenvalues must come as a complex-conjugate pair.
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6. [12 points] Consider the system of equations

x′1 = x2

x′2 = −x1 + αx2,

where α is a real-valued constant. For each of the phase portraits shown below, indicate all
values for α that could result in this sytem having a phase portrait of that type and with the
indicated stability. If it is not possible, write “not possible” and give a short explanation
why.

a. [6 points]

Solution: For both of these we need the eigenvalues; here, they are given by λ(α−λ)+1 =
0, or λ2 − αλ− 1 = 0, so λ = α

2 ±
1
2

√
α2 − 4. For this phase portrait we need a complex

eigenvalue with positive real part, so 0 < α < 2.

b. [6 points]

Solution: Using the value of λ found above, we require that there be two real, negative
roots. Thus we need α < −2.
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7. [12 points] The equation of motion for a damped, nonlinear pendulum is

θ′′ + c θ′ + k sin(θ) = 0,

where θ is the angle the pendulum makes with its midline, and c and k are positive (non-zero)
real-valued constants.

a. [4 points] Rewrite this as a system of equations in x = θ and y = θ′.

Solution: Making these substitutions, the equation becomes y′ = −k sin(x) − cy, and
we have x′ = y. Thus the system is

x′ = y

y′ = −k sin(x)− cy.

b. [4 points] Find all critical points for your system from (a).

Solution: We require that x′ = 0 and y′ = 0, so that y = 0 and x = ±nπ, for n an
integer.

c. [4 points] Which of the direction fields below could be that of your system in (a)? Why?

i. ii.

Solution: First, note that there
are multiple critical points for this
system; thus (i), which shows only
a critical point at (0, 0), cannot
be correct. Next, note that (0, 0)
is a critical point, which is not the
case for (ii). Thus (iii) must be
the correct direction field.

iii.


