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This sample exam is provided to serve as one component of your studying for this exam in
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1. [15 points] For each of the following, find explicit real-valued solutions as indicated.

a. [7 points] Find the solution to the initial value problem y′′ + 2y′ + 17y = 0, y(0) = 1,
y′(0) = 0.

Solution: The solution will look like y = eλt. Plugging in, we have the characteristic
equation λ2 + 2λ + 17 = (λ + 1)2 + 16 = 0. Thus λ = −1 ± 4i. A general solution is
y = c1e

−t cos(4t) + c2e
−t sin(4t). Applying the initial conditions, we have c1 = 1, and

−1 + 4c2 = 0, so that c2 = 1
4 . Thus the solution is

y = e−t cos(4t) +
1

4
e−t sin(4t).

We can, of course, also solve this with Laplace transforms. The forward transform gives,
with Y = L{y}, s2Y − s + 2sY + 17Y = 0, so that Y = s

s2+2s+17
= (s+1)−1

(s+1)2+16
=

s+1
(s+1)2+16

− 1
(s+1)2+16

. The two terms invert using the rules for cosine, sine, and F (s− c)
to give the result above.

b. [8 points] Find the general solution to the equation y′′ + 5y′ + 4y = et + 8t.

Solution: The complementary homogeneous solution will be a linear combination of
exponentials y = eλt. Plugging in, we have λ2 + 5λ+ 4 = (λ+ 4)(λ+ 1) = 0, so λ = −4
or λ = −1 and yc = c1e

−4t + c2e
−t.

To find the particular solution, consider the exponential and linear term separately. For
the former, we guess yp1 = aet, so that (1 + 5 + 4)aet = 10et, and a = 1

10 . For the latter,
we guess yp2 = a0 + a1t, so that 5a1 + 4a0 + 4a1t = 8t, and a1 = 2, a0 = −5

2 .
Thus the general solution is

y = c1e
−4t + c2e

−t +
1

10
et − 5

2
+ 2t.
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2. [12 points] The following problems consider a non-homogeneous second-order linear differential
equation L[y] = g(t). Suppose that y1 and y2 are solutions to this equation, and that y3, y4,
and y5 are solutions to the complementary homogeneous problem L[y] = 0.

a. [3 points] Can you say what problem each of the following solve? If so, indicate what it
is; if not, write “none.” (No explanation necessary.)

i. y1 − y2

ii. y1 − y3

iii. y1 + y2 + y3 + y4 + y5

Solution: i. L[y1− y2] = 0; ii. L[y1− y3] = g(t); iii. L[y1 + y2 + y3 + y4 + y5] = 2g(t).

b. [3 points] Explain how you are able to determine your answers in (a), or why it is not
possible to tell.

Solution: All of these stem from the linearity of the operator L, which means that
L[ay + bz] = aL[y] + bL[z]. Thus we have:
i. L[y1 − y2] = L[y1]− L[y2] = g(t)− g(t) = 0,
ii. L[y1 − y3] = L[y1]− L[y3] = g(t)− 0 = g(t), and
iii. L[y1+y2+y3+y4+y5] = L[y1]+L[y2]+L[y3]+L[y4]+L[y5] = g(t)+g(t)+0+0+0 =
2g(t).

c. [6 points] The following statements are not guaranteed to be true. Explain why.

i. The solution to the initial problem L[y] = 0, y(0) = y0, y
′(0) = v0 (for any y0 and

v0) can be written as y = c1y3 + c2y4 + c3y5 for some c1, c2, and/or c3 (where one or
more of c1, c2, and c3 may be zero).

ii. Because both y1 and y2 satisfy L[y] = g(t), we must have y1 = y2.

Solution: i. This is false because we don’t know that there are two linearly independent
solutions from the three given. In order to be able to solve the initial value problem
for any initial conditions we must start with a general solution, which requires that we
have linearly independent solutions. The problem doesn’t exclude the possibility that
y3 = y4 = y5 = 0, for example.
ii. This is false because y1 and y2 are only specified up to an additive multiple of a
homogeneous solution: for example, y2 could be y1+y3; then L[y1+y3] = L[y1]+L[y3] =
g(t) + 0, but if y3 6= 0 the functions y1 and y2 are not equal.
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3. [15 points] For all of the following, the equations are linear, constant-coefficient, and second-
order, with the coefficient of y′′ picked to be one.

a. [5 points] If the differential equation is nonhomogeneous and the general solution is
y = c1e

−2t + c2e
−3t + 4 cos(2t), what is the differential equation?

Solution: The characteristic equation of the homogeneous problem must have roots −2
and −3, so it is (λ + 2)(λ + 3) = λ2 + 5λ + 6. The differential equation is therefore
y′′ + 5y′ + 6y = g(t). The particular solution is yp = 4 cos(2t); plugging this in, we
have −16 cos(2t)− 10 sin(2t) + 24 cos(2t) = g(t), so g(t) = 8 cos(2t)− 40 sin(2t), and the
equation is

y′′ + 5y′ + 6y = 8 cos(2t)− 40 sin(2t)).
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b. [5 points] If the graph to the right shows the movement

of a unit mass on a spring with damping constant 2, set
in motion with an initial velocity of 1 m/s, write an init-
ial value problem modeling the position of the mass.

Solution: From the graph we see that y(0) = 0 and
from the problem statement we know that y′(0) = 1.
The solution is in the form of a decaying exponential,
so the homogeneous solutions to the problem are of the form e−at cos(bt) and e−at sin(bt).
The period of the oscillation is π, so b = 2. Then we know that y′′ + 2y′ + ky = 0, so
that the characteristic equation is λ2 + 2λ + k = (λ + 1)2 + k − 1 = 0, which has roots
λ = −1± i

√
k − 1. From the form of the solutions, we know

√
k − 1 = 2, so k = 5. Thus

the initial value problem is

y′′ + 2y′ + 5y = 0, y(0) = 0, y′(0) = 1.

c. [5 points] Consider the (linear, constant-coefficient. . . ) equation L[y] = 0 and the equiv-
alent system x′ = Ax. If one solution to the equation L[y] = 0 is y = e−t, what is a
corresponding solution to the system? If the coefficient of y in the equation is 3, what is
the differential equation?

Solution: If y = e−t is a solution to L[y] = 0, then x =
(
e−t −e−t

)T
is a solution to the

system, so that v =
(
1 −1

)T
is an eigenvector of A with eigenvalue λ = −1. Because

the system is derived from a second order equation, and given the coefficient of y is 3, we

know that A =

(
0 1
−3 k

)
. Then, using v and λ = −1, we have

(
1 1
−3 k + 1

)(
1
−1

)
= 0,

so k = −4 and the equation is
y′′ + 4y′ + 3y = 0.

Alternately, we know y′′+ ay′+ 3y = 0. Thus λ2 + aλ+ 3 = (λ+ 1)(λ+ r) = 0, for some
r. Expanding the right-hand side and matching powers of λ, r + 1 = a and r = 3. Thus
a = 4, and we obtain the equation above.



Math 216 / Exam 2 (16 November, 2017) page 5

4. [14 points] Recall that the nonlinear model for the number of photons P and population
inversionN in a ruby laser that we considered in lab 3 had an equilibrium point (P,N) = (1, A−
1). If we assume that A = A0+a cos(ωt), with a a very small value, the dynamics of the system
near the equilibrium point are modeled by the linear system u′ = −γ(Au + v) + γa cos(ωt),
v′ = (A− 1)u

a. [4 points] Rewrite this linear system as a second order equation in v.

Solution: Note that we have u = 1
A−1 v

′ Plugging this into the first equation, we get
1

A−1 v
′′ + γA

A−1v
′ + γv = γa cos(ωt). Multiplying through by A− 1, we obtain

v′′ + γAv′ + γ(A− 1)v = γ(A− 1)a cos(ωt).

b. [6 points] Suppose that the second order equation you obtain in (a) is v′′+2v′+v = cos(ωt),
so that the solution to the complementary homogeneous problem is vc = c1e

−t + c2te
−t.

Set up the solution for vp using variation of parameters, and solve them to obtain explicit
equations for u′1 and u′2 in terms of t only. (Do not solve these to find u1 and u2.)

Solution: Our guess for vp is vp = u1e
−t+u2te

−t. We know with variation of parameters,
the equations that u1 and u2 must satisfy are u′1e

−t+u′2te
−t = 0, −u′1e−t+u′2(e−t−te−t) =

cos(ωt). The first give u′1 = −tu′2, so the second becomes u′2 = et cos(ωt). Therefore, the
equation for u1 becomes u′1 = −tet cos(ωt).

c. [4 points] It turns out that, for some A and B, vp = A cos(ωt)+B sin(ωt). Representative
values of A and B are given for different values of ω in the table below. Does the system
exhibit resonance? Write the response vp to a forcing of cos(2t) in phase-amplitude form.

ω = 1 2 3 4 5

A = 0 −0.12 −0.08 −0.06 −0.04

B = 1 0.64 0.36 0.22 0.15

Solution: We see that the amplitude of vp, R =
√
A2 +B2, is never larger than one, so

there is no resonance. When ω = 2, A = −0.12 and B = 0.64, so R =
√

0.144 + 0.4096 ≈√
0.424. The phase shift δ has A < 0 and B > 0, so we need δ = π−arctan(0.64/0.12) ≈

π − arctan(5.33). Thus vp =
√

0.424 cos(2t− (π − arctan(5.33))).
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5. [14 points] Consider the initial value problem y′′ + 4y′ + 4y = 9e−2t, y(0) = 1, y′(0) = 0.

a. [6 points] Solve the problem without using Laplace transforms.

Solution: We first note that with y = eλt, the characteristic equation for the comple-
mentary homogeneous solution is λ2 + 4λ + 4 = (λ + 2)2 = 0. Thus λ = −2, repeated,
and yc = c1e

−2t + c2te
−2t.

For the particular solution, we therefore guess yp = at2t−2t, so that y′p = 2ate−2t −
2at2e−2t, and y′′p = 2ae−2t − 8ate−2t + 4at2e−2t. Plugging in, we have

2ae−2t − 8ate−2t + 4at2e−2t + 4(2ate−2t − 2at2e−2t) + 4at2e−2t = 9e−2t,

so that a = 9
2 . Thus the general solution is

y = c1e
−2t + c2te

−2t +
9

2
t2e−2t.

Applying the initial conditions, y(0) = c1 = 1, and y′(0) = −2c1 + c2 = −2 + c2 = 0, so
that c2 = 2. The solution is therefore

y = e−2t + 2te−2t +
9

2
t2e−2t.

b. [8 points] Solve the problem with Laplace transforms.

Solution: We transform both sides of the equation to find, with Y = L{y},

s2Y − s+ 4sY − 4 + 4Y =
9

s+ 2
,

so that Y = s+4
(s+2)2

+ 9
(s+2)3

. The easiest way to find the inverse transform is to rewrite

Y solely in terms of s+ 2:

Y =
(s+ 2) + 2

(s+ 2)2
+

9

(s+ 2)3
=

1

s+ 2
+

2

(s+ 2)2
+

9

(s+ 2)3
,

so that (applying for the second and third the rules for F (s− c) and 1/sn)

y = e−2t + 2te−2t +
9

2
t2e−2t.

We can also find the inverse transform of the first by using partial fractions and letting
s+4

(s+2)2
= A0

s+2 + A1
(s+2)2

. Clearing the denominator, s+ 4 = A0(s+ 2) +A1, so that A0 = 1

and A1 = 2. Thus

Y =
1

s+ 2
+

2

(s+ 2)2
+

9

(s+ 2)3
,

and the inverse transform is as before.
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6. [15 points] Complete each of the following problems having to do with the Laplace transform.

a. [5 points] Find the inverse Laplace transform of F (s) =
5s

s2 + 4s+ 6

Solution: Note that s2 + 4s+ 6 = (s+ 2)2 + 2. Thus 5s
s2+4s+6

= 5(s+2)
(s+2)2+2

− 10
(s+2)2+2

, and

the inverse transform is

L−1{ 5(s+ 2)

(s+ 2)2 + 2
− 10

(s+ 2)2 + 2
} = 5e−2t cos(

√
2 t)− 5

√
2 e−2t sin(

√
2 t).

b. [5 points] Given that F (s) = L{f(t)}, use the integral definition of the Laplace transform
to derive the transform rule −F ′(s) = L{tf(t)}.

Solution: We have F (s) =
∫∞
0 e−stf(t) dt. Thus, assuming that the integral converges

in a manner that allows differentiation through the integral sign,

−F ′(s) = −
∫ ∞
0

d

ds
(e−st)f(t) dt = −

∫ ∞
0
−te−stf(t) dt

=

∫ ∞
0

e−sttf(t) dt = L{tf(t)}.

c. [5 points] Consider the initial value problem ty′′+y = 0, y(0) = 1, y′(0) = 0. If Y = L{y},
what equation does Y satisfy?

Solution: Note that L{y′′} = s2Y − s, and that the transform rule in part (b) above
(also, rule B on the formula sheet) gives L{tf(t)} = −F ′(s). Thus, with f(t) = y′′

and F (s) = s2Y (s) − 1, we have L{ty′′} = −s2Y ′(s) − 2sY (s) + 1. Transforming the
differential equation, we therefore have

−s2Y ′(s)− 2sY (s) + 1 + Y (s) = 0,

a first-order equation for Y (s). Note that we can rewrite this as Y ′+ 2s−1
s2

Y = 1
s2

, so the
equation is first-order and linear, and therefore solvable at least in principle. It is not
clear if we would be able to invert the resulting Y (s), however.
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7. [15 points] Consider the system of differential equations x′ = 3x+ 4y, y′ = 2x+ y, with initial
conditions x(0) = 0, y(0) = 2.

a. [6 points] Using Laplace transforms, find explicit equations for X = L{x} and Y = L{y}.

Solution: We have X = L{x} and Y = L{y}. Then, transforming both equations, we
have sX = 3X + 4Y and sY − 2 = 2X + Y . Thus Y = 1

4(s − 3)X, and the second
equation becomes (s − 1)14(s − 3)X − 2X = 2, or X = 8

s2−4s−5 = 8
(s−5)(s+1) . Plugging

back into the equation for Y , we have

X =
8

(s− 5)(s+ 1)
, Y =

2(s− 3)

(s− 5)(s+ 1)
.

b. [4 points] Find x and y in terms of any constants you may have in partial fractions
expansions of X and Y (that is, do not solve for the values of those constants).

Solution: We can find the inverse transforms for both of these by using partial fractions:
for X, we have X = A/(s− 5) +B/(s+ 1). For Y , we have Y = C/(s− 5) +D/(s+ 1).
Thus

x = Ae5t +Be−t, y = Ce5t +De−t.

If we complete the solution, which is not required in the problem, we have in the partial
fractions decomposition for X 8 = A(s + 1) + B(s− 5). Plugging in s = 5 and s = −1,
we get A = 4

3 and B = −4
3 . Similarly for Y , we have 2s − 6 = C(s + 1) + D(s − 5).

Plugging in s = 5 and s = −1, we have C = 2
3 and D = 4

3 . Thus the wolution is

x =
4

3
e5t − 4

3
e−t, y =

2

3
e5t +

4

3
e−t.

c. [5 points] If we rewrote the system as a second order differential equation L[y] = 0 for y,
what would the characteristic equation for λ be? What is the linear operator L?

Solution: The characteristic equation for λ can be seen from the denominator of X and
Y , or from the exponentials in x and y: (λ − 5)(λ + 1) = λ2 − 4λ − 5 = 0. Thus the
operator L is L = D2 − 4D − 5, or some constant multiple thereof.


