
Math 216 — Final Exam
14 December, 2017

This sample exam is provided to serve as one component of your studying for this exam in
this course. Please note that it is not guaranteed to cover the material that will
appear on your exam, nor to be of the same length or difficulty. In particular,
the sections in the text that were covered on this exam may be slightly different from those
covered by your exam.

This material is (c)2017, University of Michigan Department of Mathematics, and released under
a Creative Commons By-NC-SA 4.0 International License. It is explicitly not for distribution on
websites that share course materials.
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1. [15 points] For each of the following, find explicit real-valued solutions as indicated.

a. [7 points] Solve the initial value problem 2ty′ − y = −3t2, y(1) = 2. (Consider t ≥ 1.)

Solution: This is linear but not separable. In standard form, we have

y′ − 1

2t
y = −3

2
t,

so that an integrating factor is exp(
∫
− 1

2t dt) = −1
2 exp(ln(t)) = t−1/2. Multiplying

through by this, we have (t−1/2y)′ = −3
2 t

1/2. Integrating and solving for y, we have

y = −t2 + Ct1/2.

The initial condition requires that 2 = −1 + C, and C = 3.

b. [8 points] Find the general solution to y′′ − 4y = 12t+ e−2t.

Solution: We know the general solution will be y = yc + yp, where yc is the solution to
the complementary homogeneous problem and yp a particular solution. For yc we take
y = eλt, so that λ2 − 4 = 0, and λ = ±2. Thus yc = c1e

−2t + c2e
2t.

Then for the particular solution we consider the terms 12t and e−2t separately. For 12t,
we guess xp = at+ b, so that −4at− 4b = 12t, and b = 0, a = −3.
For e−2t, we guess yp = ate−2t, because e−2t appears in the complementary homogeneous
solution. Then y′p = ae−2t − 2ate−2t, and y′′p = −4ae−2t + 4ate−2t. Plugging in, we have

a
(
(−4e−2t + 4te−2t)− 4te−2t

)
= −4ae−2t = e−2t,

so that a = −1
4 .

The general solution is then

y = c1e
−2t + c2e

2t − 3t− 1

4
t e−2t.
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2. [15 points] For each of the following, find explicit real-valued solutions as indicated.

a. [7 points] Find the general solution to the system x′ = 2x+ 3y, y′ = 5x+ 4y.

Solution: Note that the coefficient matrix for the system in vector form is A =

(
2 3
5 4

)
.

The eigenvalues satisfy (2− λ)(4− λ)− 15 = λ2 − 6λ− 7 = (λ− 7)(λ+ 1) = 0, so λ = 7
or λ = −1.

If λ = 7, the eigenvector satisfies

(
−5 3
5 −3

)
v = 0, so that v =

(
3
5

)
. If λ = −1, we

have

(
3 3
5 5

)
v = 0, and v =

(
1
−1

)
.

Thus the general solution is

x =

(
x
y

)
= c1

(
3
5

)
e7t + c2

(
1
−1

)
e−t =

(
3c1e

7t + c2e
−t

5c1e
7t − c2e−t

)
.

b. [8 points] Solve the initial value problem y′′ − 4y′ + 13y = −δ(t− 4), y(0) = 1, y′(0) = 3.

Solution: Because of the delta function, we will use Laplace transforms. Transforming
both sides and letting Y = L{y}, we have

(s2 − 4s+ 13)Y − s− 3 + 4 = −e−4s,

so that

Y = − e−4s

s2 − 4s+ 13
+

s− 1

s2 − 4s+ 13
.

To invert the transform, we rewrite the right-hand side as

Y = − e−4s

(s− 2)2 + 9
+

s− 2

(s− 2)2 + 9
+

1

(s− 2)2 + 9
.

We can invert this by inspection to obtain:

y = −1

3
u4(t) e

2(t−4) sin(3(t− 4)) + e2t cos(3t) +
1

3
e2t sin(3t).
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3. [12 points] For parts (a) and (b), identify each as true or false, and give a short mathematical
calculation, with explanation, justifying your answer. For part (c) the statement is false.
Explain why.

a. [4 points] If L is a linear second-order differential operator, y1 and y2 are non-zero
functions for which L[y1] = L[y2] = 0, and y3 is a function for which L[y3] = 3

2+t2
, then

for any c1, c2, and c3, y = c1y1 + c2y2 + c3y3 solves L[y] = 3
2+t2

.

True False

Solution: Because L is linear, we have L[c1y1+c2y2+c3y3] = c1L[y1]+c2L[y2]+c3L[y3] =
(c1 + c2)(0) + c3(

3
2+t2

) 6= 3
2+t2

(unless c3 = 1).

b. [4 points] If L is a linear second-order differential operator with continuous coefficients,
and y1 and y2 are non-zero functions satisfying L[y] = 0, y1(0) = y′2(0) = 0 and y′1(0) =
y2(0) = 1, then a general solution to L[y] = 0 is given by y = c1y1 + c2y2.

True False

Solution: Note that the Wronskian of y1 and y2, at t = 0, is W [y1, y2](0) = y1(0)y′2(0)−
y′1(0)y2(0) = −1 6= 0. Thus y1 and y2 are linearly independent at zero (and hence
everywhere), and a general solution is given by y = c1y1 + c2y2.

x1(t)
x2(t)
x3(t)

6 12
t

-1

1
c. [4 points] Suppose A is a real-valued 3 × 3 matrix, and

that the three curves shown to the right are the component
plots of a solution to x′ = Ax, as indicated. Explain why
the statement “eigenvalues of A must be complex-valued”
is false.

Solution: If A is a real-valued 3×3 matrix, complex-
valued eigenvalues must come in complex-conjugate
pairs, and there are three eigenvalues. Here we see
decaying oscillatory behavior, so there must be a
(pair of complex-conjugate) eigenvalue(s), and one
real one.
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1 2 3 4 5
t

-1

1

2

3

4

5
y

4. [6 points] Representative solution curves for a first-order
differential equation y′ = f(y) are shown in the figure
to the right. Write a possible function f(y) that could
give this behavior. Explain why your function could be
correct.

Solution: We note that the differential equation has
equilibrium solutions at y = 1 and y = 3, and y′ =
f(y) < 0 for y > 3. Thus one possible function is f(y) =
−(y − 3)(y − 1).

g(y)

-1 1 2 3
y

-2

-1

1

2

h(y)

-1 1 2 3
y

-2

-1

1

2

5. [6 points] Consider the two equations
A. y′ = g(y) and
B. y′ = h(y),
where g(y) and h(y) are given in the figures to the right.
Which of the following three statements must hold for
each equation?
1. “The equation with the initial condition y(0) = 1 must
have a unique solution.”
2. “The equation with an initial condition y(0) = y0 < 1
must have a unique solution.”
3. “The solution to the equation with an initial condition
y(0) = y0 < 1 will asymptotically approach y = 1 as
t→∞.”
Briefly explain your answers.

Solution: We note that g(y), g′(y), h(y), and h′(y) appear continuous everywhere but at
y = 1, and g(y) and g′(y) are also continuous at y = 1 while h′(y) appears to be undefined
there. Thus the existence and uniqueness theorem will hold for equation A (y′ = g(y)),
which guarantees that all of statements 1, 2, and 3 must be true (if we start below y = 1
solutions will increase, but y = 1 is a solution, so any solution starting below y = 1 cannot
reach y = 1 or solution curves would intersect).
For equation B (y′ = h(y)), however, we are not guaranteed a unique solution when
y(0) = 1. Thus statement 1 is not guaranteed to be true, though statement 2 is. And for
the same reason we cannot guarantee that an initial condition below y = 1 will not end
up intersecting at y = 1. Thus statement 3 is not guaranteed to be true either.
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6. [11 points] For parts (a) and (b) explain what is wrong with the calculation. For part (c),
show the indicated result.

a. [4 points] (Explain why this is incorrect:) L−1{ 4e−3s

(s2+4)
} = 2u3(t) sin(2t)

Solution: The rule for the exponential factor is L−1{e−scF (s)} = uc(t)f(t − c). Here
the function sin(2t) hasn’t been translated as it should.

b. [4 points] (Explain why this is incorrect:) If f(t) =

{
2t, t ≤ 3

5, t > 3
, then L{f(t)} = 2

s2
+ 5e−3s

s .

Solution: Note that the inverse transform of the result given is L−1{ 2
s2

+ 5e−3s

s } =

2t+ 5u3(t) =

{
2t, t < 3

2t+ 5, t ≥ 3
: instead of turning off the 2t and turning on the constant

function 5, we’ve just added 5 starting at t = 3.

c. [3 points] Use convolution and properties of δ(t − c) to show that L−1{e−scF (s)} =
uc(t)f(t − c), given that L{f(t)} = F (s). (Note: this may be challenging, and you may
want to leave it until you’ve worked other problems on the final.)

Solution: Note that, formally, L−1{e−sc} = δ(t− c). Then convolution says

L−1{e−scF (s)} =

∫ t

0
δ(x− c)f(t− x) dt.

If t < c, the delta function is uniformly zero, and we obtain the inverse transform 0. If
t > c, the integral of the delta function against f(t − x) filters out the function at the
value x = c, so that we get f(t− c). Thus

L−1{e−scF (s)} =

{
0, t < c

f(t− c), t > c
= uc(t)f(t− c).

We note that the value at the discontinuity is ambiguous, which is allowed.
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7. [9 points] Consider the system

xy
z

′ =

−2 0 0
2 0 1
2 −1 0

xy
z

. The coefficient matrix has

eigenvalues and eigenvectors λ = −2 and λ = ±i, with v−2 =

−5
2
6

 and v±i =

 0
1
±i

.

a. [6 points] Write a general, real-valued solution to the system.

Solution: Separating real and imaginary parts of the complex solutions, we havexy
z

 = c1

−5
2
6

 e−2t + c2

 0
cos(t)
− sin(t)

+ c3

 0
sin(t)
cos(t)

 .

b. [3 points] As t→∞, what happens to solution trajectories? If we look at trajectories for
large times, what will we see?

Solution: As t → ∞, the first term in the general solution will vanish, and we will be
left with oscillatory terms in the yz-plane from the last two solutions. Thus for large
times, we will see circles in the yz-plane.
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8. [12 points] Suppose that for some nonlinear second-order differential equation y′′ = f(y)
we can write an equivalent system of two first-order differential equations x′1 = F (x1, x2),
x′2 = G(x1, x2). Critical points of the latter are x0 = (0, 0) and x1 = (1, 0). The Jacobian at

these points is J(x0) =

(
0 1
−3 −2

)
and J(x1) =

(
0 1
3 −2

)
.

a. [8 points] Sketch a phase portrait for the nonlinear system.

Solution: At x0 the Jacobian has eigenvalues given by λ2 + 2λ+ 3 = (λ+ 1)2 + 2 = 0,
so that λ = −1± i

√
2, and x0 is a stable spiral point. Note that (considering the point

(1, 0), where the derivatives on a trajectory are (0,−3)) the spiral moves in a clockwise
direction.
At x1, the Jacobian has eigenvalues given by λ2 + 2λ− 3 = (λ+ 1)2 − 4 = 0, so λ = −3

or λ = 1. If λ = −3, v =
(
1 −3

)T
, and if λ = 1, v =

(
1 1

)T
.

Plotting these and adding the expected trajectories gives the phase portrait below.

-1 1 2
x1

-1

1

x2

b. [4 points] Based on your phase portrait, sketch a qualitatively accurate graph of y as a
function of t if we start with the initial condition y(0) = 0, y′(0) = 1.

Solution: From the phase portrait, we see that a trajectory starting at (0, 1) should
spiral in to the origin. Thus we know that y(0) = 0 and y′(0) = 1, and that y must be a
decaying sinusoidal function. Thus we have a graph like that shown below.

2 4 6 8 10
t

-0.2

0.2

0.4

0.6

y
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critical point

x

y
9. [14 points] The Brusselator is a nonlinear model of a

chemical reaction which can have oscillatory concentra-
tions x and y of the chemicals in the reaction. A model
for this is

x′ = 1− (b+ 1)x+
1

4
x2y, y′ = bx− 1

4
x2y.

The figure to the right gives the phase portrait for this
system for some value of b.

a. [4 points] What are the coordinates of the critical
point shown? (Note that your answer may involve
the parameter b.)

Solution: Critical points are where x′ = 1−x((b+
1) − 1

4xy) = 0 and y′ = x(b − 1
4xy) = 0. The

latter says that x = 0 or xy = 4b. If x = 0, the
first is unsolvable. If xy = 4b, the first becomes
1 − x(b + 1 − b) = 0, so x = 1 and y = 4b. The
critical point is (x, y) = (1, 4b).

b. [7 points] Given the behavior shown in the phase portrait, what can you say about the
parameter b?

Solution: The phase portrait shows that the linear behavior of the critical point is that
of an unstable spiral point. To see how b may determine this, we find the Jacobian and
investigate the behavior at the critical point. The Jacobian is

J =

(
−(b+ 1) + 1

2xy
1
4x

2

b− 1
2xy −1

4x
2

) ∣∣∣∣
x=1,y=4b

=

(
b− 1 1

4
−b −1

4

)
.

The behavior of the critical point will be determined by the eigenvalues of this Jacobian,
which are given by (b− 1− λ)(−1

4 − λ) + 1
4b = λ2 + (54 − b)λ+ 1

4 = 0, or

λ =
1

2
(b− 5

4
)± 1

2

√
(b− 5

4
)2 − 1.

For this to give an unstable spiral, we must have b > 5
4 , and (b− 5

4)2− 1 < 0. The latter
says that −1 < (b− 5

4) < 1, so we know that 5
4 < b < 9

4 .
It is possible from the picture that we have real eigenvalues, but we still know that the
point must be unstable. If that were the case we would require b > 5

4 and (b− 5
4)2 ≥ 1,

so that b ≥ 9
4 .

c. [3 points] We said that the Brusselator can have oscillatory concentrations of x and y.
Explain how the result here does (or does not) demonstrate this behavior.

Solution: We see that the critical point is unstable, and trajectories converge to some-
thing that looks like the limit cycle that we explored in the van der Pol equation in lab 2.
On that limit cycle, the values of x and y will oscillate as we move around the closed
trajectory.


