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1. [12 points] Suppose we are solving the linear system x′ = Ax +

(
0
8

)
.

a. [4 points] If A =

(
−3 1
1 −3

)
, find all critical points for the system.

Solution: These are where x is a constant, so that, with x =
(
x y

)T
, −3x+ y = 0 and

x− 3y = −8. Thus −8x = −8, and x = 1, so that y = 3. The only critical point is (1, 3).

b. [5 points] If the eigenvalues and eigenvectors of A are λ1,2 = −4,−2 with v1 =

(
−1
1

)
and v2 =

(
1
1

)
, sketch a phase portrait for the system.

Solution: From our work in (a) we know that the critical point for this system is
xc = (1, 3). Then, either by letting x = xc + u (so that u′ = Au) or by noting that
the general solution is x = xc + xp = u + xc, we know that the phase portrait for the
homogeneous system u′ = Au will be centered on xc.

The phase portrait there will have two straight line solutions that correspond to the
eigenvectors, with solutions converging to xc. The eigenvector associated with vT1 =(
−1 1

)
is much smaller (more negative) than the other, so trajectories will collapse in

this direction first, and then converge to the critical point along vT2 =
(
1 1

)
, giving the

phase portrait below.
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c. [3 points] For a different A, could a solution to the system be x = e−3t sin(t), y =
e−3t cos(t)? Explain.

Solution: This is not possible, because of the shift in the critical point induced by the
inhomogeneity. If we had x = e−3t sin(t)+1, y = e−3t cos(t)+3, following the logic given
in the first paragraph in the solution for part (b), it could be the solution for a different
matrix A.
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2. [10 points] In this problem we consider a linearization of the Lorenz system that we considered
in lab 5, with η =

√
8(r − 1)/3,xy

z

′ =
−10 10 0

1 −1 −η
η η −2.67

xy
z

 .

a. [5 points] For some value of r, if phase portrait is shown in the figure to the right, below,
what can you say about the eigenvalues and eigenvectors of this system (please, whatever
you do, do not try to calculate exact values from the system)? The solid black trajectories
lie in a plane. The dashed trajectories start to the left the plane as you look at it. The
two black points are, approximately, (1, 0.75, 1.5) and (1, 1, 1.25). You should be able to
specify at least two eigenvectors and the relative values of the eigenvalues.

Solution: Note that all eigenvalues must be real, be-
cause there are two straight line trajectories (and thus
there must be three). We assume that trajectories
decay to the origin. Then, because the dashed tra-
jectories decay rapidly into the plane determined by
the solid trajectories, we know that one eigenvalue is
much more negative than the other two. Given the
two points, which appear to lie on straight-line solu-
tions in the plane, we know that two eigenvectors are

v1 =
(
1 0.75 1.5

)T
and v2 =

(
1 1 1.25

)T
(note

that v1 has the larger z-coordinate), with eigenvalues
λ1 < λ2 < 0. The third eigenvalue, λ3, is significantly more negative than λ1.

If we assume solutions grow instead of decaying we
have the same analysis, but with 0 < λ2 < λ1 < λ3.

b. [5 points] For a different value of r, the general solution to the system is, approximately,

x = c1e
−12t + c2 (0.5 cos(0.4 t)− 0.05 sin(0.4 t)) e−t+

c3 (0.05 cos(0.4 t) + 0.5 sin(0.4 t)) e−t

y = −0.4 c1 e
−12t + c2 (0.5 cos(0.4 t)− 0.05 sin(0.4 t)) e−t+

c3 (0.05 cos(0.4 t) + 0.5 sin(0.4 t)) e−t

z = −0.1 c1 e
−12t + 0.75 c2 e

−t cos(0.4 t) + 0.75 c3 e
−t sin(0.4 t).

What are the eigenvalues and eigenvectors of the coefficient matrix for the linear system
in this case?

Solution: We see that λ1 = −12 and λ2,3 = −1± 0.4i. The eigenvector v1 we can read

from the first component of the solutions: v1 =
(
1 −0.4 −0.1

)T
. For the complex

λ, we can read the real and imaginary parts of each component of the vector from
the coefficient of the cosine terms in the second and third solutions, getting v2,3 =(
0.5± 0.05i 0.5± 0.05i 0.75

)T
.
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3. [12 points] In each of the following we consider a first order differential equation y′ = f(t, y).
In these, the functions f(t, y) and g(t, y) are different functions.
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a. [6 points] The direction field for the equation y′ =
f(t, y) is shown to the right. For each of the follow-
ing, explain if the statement is true, false, or if you
cannot tell.
(1) The equation is autonomous, that is, f(t, y) is
actually only a function of y.
(2) The equation is linear.
(3) The initial value problem y′ = f(t, y), y(0) = y0
has a unique solution for all y0 between −2 and 2.

Solution: (1) The equation is not autonomous,
because the derivative y′ depends on t
(2) The equation is not linear: if it where, we would have y′ = −p(t)y + q(t), and
for fixed t the could be only one critical point (which is not true; for example, along
t = 2 we have critical points at y = 0 and y = 2).
(3) There are no points (0, y0) at which the function value (slope shown in the direction
field) is not continuously changing from the previous value, and the change (derivative
fy) is similarly continuous, so there should be a unique solution for all of these points.

b. [6 points] Let y′ = g(t, y) = y(y3− a3), where a is a real number. Identify all a for which
it is true both there is a critical point other than y = 0, and that y = 0 is stable. Be
sure it is clear how you arrive at your conclusion. Draw a phase line for this situation, or
explain why it is impossible.

Solution: If a = 0, we have y′ = y4, and the only critical point is y = 0. Note that
in this case y′ > 0 for all y 6= 0, so the critical point is unstable (or, if one likes the
term, semi-stable). If a 6= 0, there are two critical points, y = 0 and y = a. If a < 0,
the equation is y′ = y(y3 + |a|3). For y > 0, y′ > 0; for −|a| < y < 0, y′ < 0, and for
y < −|a| y′ > 0. Thus when a < 0, the critical point y = 0 is unstable and y = −|a| is
stable. Similarly, if a > 0, y′ > 0 when y < 0; y′ < 0 when 0 < y < a; and y′ > 0 when
y > a. Thus y = 0 is stable and y = a is unstable. The values of a we want are a > 0.
The phase line is shown below.

0 a



Math 216 / Final (14 Dec, 2018) page 5

4. [12 points] In lab 4 we consider a forced electrical system of the form

y′′ + 2γy′ + ω2
0y = F (t),

which models the current in a circuit. In this problem we take γ = 0.25 and ω0 = 1.
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Ra. [6 points] The amplitude of the long-term response
to a forcing voltage F = sin(ωt) is shown as a func-
tion of ω in the figure to the right. Without solving
the differential equation, sketch a reasonably accu-
rate graph of the solution to the differential equa-
tion with initial conditions y(0) = 1, y′(0) = 0, when
ω = 0.5. (Your graph should include magnitudes and
timescales where it is possible to determine them.)

Solution: We know that the solution to the problem will be y = yc + yp, and
with small damping yc will consist of decaying sinusoidal terms. From the method
of undetermined coefficients, yp will be yp = A cos(ωt) + B sin(ωt) = R cos(ωt − φ).
Thus the steady state response is a pure sinusoidal solution with period T = 2π

ω = 4π,
and the amplitude R(ω) = R(0.5) = 1.25, from the graph of the gain function. Given
this and the initial conditions, we have the graph below.

4π
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b. [6 points] Now suppose that

F (t) = I(t) =

{
0, t < c

k, c ≤ t,

and that y(0) = y′(0) = 0. Without solving the differential equation, sketch the behavior
of the solution, indicating the magnitude of the solution and its other characteristics as
possible.

Solution: For t < c, we know the solution will be zero. At t = c we are solving
y′′ + 2γy′ + ω2

0y = k, with the initial condition y(0) = y′(0) = 0. We know that this
will have a decaying oscillatory component, and will converge to a constant steady state
yp = k/ω2

0 = k. Thus we have the graph shown below.
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5. [12 points] Consider the systems model of a linear oscillator given by

x′ = y, y′ = −2x− 2y + kδ(t− t0),

with initial conditions x(0) = 0, y(0) = 2.

a. [5 points] Use Laplace transforms on the system to find x(t).

Solution: With X = L{x} and Y = L{y}, the Laplace transform of the first equation
in the system is sX = Y . The second transforms similarly to give sY − 2 = −2X− 2Y +
ke−t0s. Using Y = sX, we can rewrite the second as s2X + 2sX + 2X = 2 + ke−t0s, so
that

X =
2

(s+ 1)2 + 1
+

ke−t0s

(s+ 1)2 + 1
.

Inverting, we have

x(t) = 2e−t sin(t) + ke−(t−t0) sin(t− t0)ut0(t).

b. [5 points] For what t0 and k will x(t) be identically zero for all t > t0?

Solution: We must take t0 to be a multiple of the period (or half-period), so that y = 0
at that instant. The period is 2π. Thus, we can take t = 2nπ (or t = nπ), for n a positive
integer. At that point we need k to be the negative of the magnitude of the decaying
oscillation 2e−t sin(t): that is, k = −2e−2nπ. (Or, for a half-period, k = 2e−nπ, because
the sine term is becoming negative there.)

c. [2 points] Give a physical system that this could model and explain what the result in
(b) corresponds to in the model.

Solution: One possible model is that x is the position of a mass on a spring; another
is that it is the current in a circuit. In either case, we start with an initial velocity (or
voltage) of 2 and no initial displacement (or current). The impulse is like an instanta-
neous force on the mass that induces a change in momentum to stop all motion (or, an
instantaneous change in voltage across the capacitor to zero out the current).
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6. [12 points] Consider the nonlinear system

x′ = 1− y, y′ = 2− 2y + 3 sin(x).

Sketch a qualitatively accurate phase portrait showing representative trajectories, by doing
appropriate linearization and local analysis. Use your phase portrait to predict the behavior
of a trajectory starting at x(0) = π, y(0) = 0.

Solution: To sketch the phase portrait, we first find critical points. Requiring x′ = 0 = 1−y,
we have y = 1. Then y′ = 0 = 2− 2(1) + 3 sin(x), so x = nπ, for any integer n. To determine
the linear behavior at each of the critical points (nπ, 1), we find the Jacobian to tell us the

coefficient matrices for the linear systems. We have J(x, y) =

(
0 −1

3 cos(x) −2

)
. Thus, at

(nπ, 1) with n even and odd, the coefficient matrices are, respectively,

J2n =

(
0 −1
3 −2

)
and J2n+1 =

(
0 −1
−3 −2

)
.

At x = nπ, n even, eigenvalues of the coefficient matrix satisfy λ2 + 2λ+ 3 = (λ+ 1)2 + 2 = 0,
so λ = −1± i

√
2. Thus at these critical points we have a spiral sink. Further, starting from

(1, 0) then gives (x′, y′) = (0, 3), so motion is counter-clockwise around the critical points.
At x = nπ, n odd, eigenvalues of the coefficient matrix satisfy λ2+2λ−3 = (λ+3)(λ−1) =

0, so λ = −3 or λ = 1, and these are unstable saddle points. The eigenvectors associated

with the eigenvalues are, respectively, v−3 =

(
1
3

)
and v1 =

(
1
−1

)
.

Putting these together, we have the phase portrait shown below.
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From this, we see that an initial condition (π, 0) will follow the saddle trajectory below the
critical point (π, 1) up and to the right, then down, and will likely spiral in to either the
critical point (2π, 1). This gives the dashed trajectory shown below.
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You SHOULD NOT complete this page or the one following it if you have completed
the mastery assessment.

7. [15 points] For each of the following find explicit, real-valued solutions as indicated. For this
problem do NOT use Laplace transforms. Note that you do not need to simplify numeric
expressions.

a. [8 points] Find the solution to y′ =
8 + 4s2 − 2sy

2 + s2
, y(0) = 4.

Solution: This problem is first order and linear, but not separable, so we use an inte-
grating factor for it. Rewriting it in standard form, we have

y′ +
2s

2 + s2
y = 4,

so that an integrating factor is µ = e
∫
2s/(2+s2) ds = eln |2+s

2| = 2 + s2. Multiplying
through by µ, we have

(2 + s2)(y′ +
2s

2 + s2
y) = ((2 + s2)y)′ = 4(2 + s2).

Integrating both sides,

(2 + s2)y = 4(2s+
1

3
s3) + C,

and the initial condition requires that C = 8. Thus

y = 4
2s+ 1

3s
3

2 + s2
+

8

2 + s2
.

b. [7 points] Find the general solution to y′′ − 4y′ − 5y = −10t+ 22.

Solution: This problem is nonhomogeneous, linear, and constant-coefficient. The general
solution will be y = yc + yp, where yc is the general solution to the complementary
homogeneous problem. For this we look for a solution y = eλt. Plugging in to the
homogeneous equation, we have

2λ2 − 8λ− 10 = 2(λ+ 1)(λ− 5) = 0.

Thus λ = −1 or λ = 5, so that yc is given by yc = c1e
−t + c2e

5t. Then, to find yp, we
use undertermined coefficients and look for a solution of the form yp = At+B. Plugging
into the differential equation, we have

−8A− 10(At+B) = −20t+ 44,

so that A = 2, and B = −6, and so

y = c1e
−t + c2e

5t + 2t− 6.
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You SHOULD NOT complete this page or the one preceding it if you have completed
the mastery assessment.

8. [15 points] For each of the following find explicit, real-valued solutions as indicated.

a. [8 points] Solve x′ =

(
−4 −10
10 8

)
x.

Solution: We use the eigenvalue method to solve the system. We guess x = veλt, so
that, plugging into the system, λv = Av, and λ and v must be the eigenvalues and
eigenvectors of the matrix A. Thus

det(

(
−4− λ −10

10 8− λ

)
) = (−4− λ)(8− λ) + 100 = λ2 − 4λ+ 68 = (λ− 2)2 + 64 = 0,

and λ = 2 ± 8i. With λ = 2 + 8i, the eigenvector satisfies

(
−6− 8i −10

10 6− 8i

)
v = 0, so

that an eigenvector is a multiple of v =

(
5

−3− 4i

)
. To find two linearly independent real-

valued solutions, we separate the real and imaginary parts of x = veλt = ve2t(cos(8t) +
i sin(8t)). Using these as our fundamental solution set, the general solution is

x = c1

(
5 cos(8t)

−3 cos(8t) + 4 sin(8t)

)
e2t + c2

(
5 sin(8t)

−4 cos(8t)− 3 sin(8t)

)
e2t.

b. [7 points] Find the solution to z′′ + 4z′ + 20z = 8u6(t), z(0) = 0, z′(0) = 9.

Solution: Taking the Laplace transform of both sides of the equation, we have, with
Z(s) = L{z(t)},

s2Z − 9 + 4sZ + 20Z =
8e−6s

s
.

Solving for Z, we have Z(s) = 9
s2+4s+20

+ 8e−6s

s(s2+4s+20)
. Noting that s2 + 4s + 20 =

(s + 2)2 + 42, we can invert the first term and can use partial fractions on the second.
For the second, we have

8

s(s2 + 4s+ 20)
=
A

s
+
B(s+ 2) + C

(s+ 2)2 + 42
,

so that, clearing the denominators,

8 = A((s+ 2)2 + 42) +Bs(s+ 2) + Cs.

Letting s = 0, we get A = 2
5 . Then from the coefficient of s2, B = −A = −2

5 , and finally,
from the coefficient of s, C = −4A− 2B = −4

5 . Thus, inverting the transform, we have

z(t) = L−1{ 9

(s+ 2)2 + 42
+

2

5
s− 2

5

s+ 2

(s+ 2)2 + 42
+

4

5

1

(s+ 2)2 + 42

=
9

4
e−2t cos(4t) +

(
2

5
− 2

5
e−2(t−6) cos(4(t− 6))− 1

5
e−2(t−6) sin(4(t− 6))

)
u6(t).
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Formulas, Possibly Useful

• Some Taylor series, taken about x = 0:

ex =

∞∑
n=0

xn

n!
cos(x) =

∞∑
n=0

(−1)n
x2n

(2n)!

sin(x) =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

1

1− x
=
∞∑
n=0

xn

About x = 1: ln(x) =

∞∑
n=1

(−1)n+1 (x− 1)n

n
.

• Some integration formulas:
∫
u v′ dt = u v−

∫
u′ v dt; thus

∫
t et dt = t et−et+C,

∫
t cos(t) dt =

t sin(t) + cos(t) + C, and
∫
t sin(t) dt = −t cos(t) + sin(t) + C.

• Euler’s formula: eiθ = cos θ + i sin θ.

Some Laplace Transforms

f(t) = L−1{F (s)} F (s) = L{f(t)}

1. 1
1

s
, s > 0

2. eat
1

s− a
, s > a

3. tn
n!

sn+1

4. sin(at)
a

s2 + a2

5. cos(at)
s

s2 + a2

6. uc(t)
e−cs

s

7. δ(t− c) e−cs

A. f ′(t) s F (s)− f(0)

A.1 f ′′(t) s2F (s)− s f(0)− f ′(0)

A.2 f (n)(t) snF (s)− · · · − f (n−1)(0)

B. tnf(t) (−1)nF (n)(s)

C. ec tf(t) F (s− c)

D. uc(t) f(t− c) e−cs F (s)

E. f(t) (periodic with period T )
1

1− e−Ts

∫ T

0
e−stf(t) dt

F.
∫ t
0 f(x)g(t− x) dx F (s)G(s)


