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1. [15 points] Find explicit, real-valued solutions to each of the following, as indicated. For this
problem, DO NOT use Laplace transforms.

a. [8 points] Find the solution z(t) to the initial value problem 3z′′ + 12z′ + 39z = 6e−t,
z(0) = 1

5 , z′(0) = 0

Solution: This problem is nonhomogeneous, linear, and constant-coefficient. The general
solution will be z = zc + zp, where zc is the general solution to the complementary
homogeneous problem. For this we look for a solution z = eλt. Plugging in to the
homogeneous equation, we have 3λ2 + 12λ+ 39 = 3(λ2 + 4λ+ 13) = 3((λ+ 2)2 + 9) = 0.
Thus λ = −2 ± 3i. Separating the real and imaginary parts of the resulting complex
exponential, we have zc = c1e

−2t cos(3t) + c2e
−2t sin(3t).

Then, to find zp, we use undertermined coefficients and look for a solution of the
form zp = Ae−t. Plugging into the differential equation, we have 3A − 12A + 39A = 6,
or 10A = 2, so that A = 1

5 . Thus

z = c1e
−2t cos(3t) + c2e

−2t sin(3t) +
1

5
e−t.

Applying the initial conditions, we have z(0) = c1 + 1
5 = 1

5 , so c1 = 0. Then
z′(0) = 3c2 − 1

5 = 0, so that c2 = 1
15 , and

z =
1

15
e−2t sin(3t) +

1

5
e−t.

b. [7 points] Find the general solution y(t) to y′′ + 5y′ + 6y = cos(t).

Solution: Again, the general solution will be y = yc + yp. For yc, the characteristic
equation is λ2+5λ+6 = (λ+2)(λ+3) = 0, so λ = −2 or λ = −3, and yc = c1e

−2t+c2e
−3t.

For yp, we again use the method of undetermined coefficients and guess yp = a cos(t)+
b sin(t). Plugging into the equation, we have

(−a cos(t)− b sin(t)) + (−5a sin(t) + 5b cos(t)) + 6a cos(t) + 6b sin(t) = cos(t).

Collecting the cos(t) and sin(t) terms, this is 5a+ 5b = 1 and −5a+ 5b = 0. Adding the
two we get b = 1

10 , so that from the second a = 1
10 , and the

y = c1e
−2t + c2e

−3t +
1

10
cos(t) +

1

10
sin(t).
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2. [15 points] Find explicit, real-valued solutions to each of the following, as indicated. For this
problem, USE Laplace transforms.

a. [8 points] Find the solution y(t) to the initial value problem y′′ + 3y′ + 2y = 4, y(0) = 0,
y′(0) = 0.

Solution: Taking the Laplace transform of both sides of the equation, we have L{y′′ +
3y′ + 2y} = 4

s , so that, with Y = L{y},

s2Y + 3sY + 2Y =
4

s
,

so that

Y =
4

s(s2 + 3s+ 2)
=

4

s(s+ 1)(s+ 2)
.

Partial fractions allows us to rewrite 4
s(s+1)(s+2) = A1

s + B 1
s+1 + C 1

s+2 , so that we can
find the inverse transform

y(t) = L−1{A1

s
+B

1

s+ 1
+ C

1

s+ 2
} = A+Be−t + Ce−2t.

To find the constants A, B, and C, we solve in the equality giving the partial fractions
decomposition. Clearing the denominators, we have 4 = A(s + 1)(s + 2) + Bs(s + 2) +
Cs(s + 1). Plugging in s = 0, A = 2; with s = −1, B = −4; and with s = −2, C = 2.
Thus

y = 2− 4e−t + 2e−2t.

b. [7 points] Find the solution z(t) to the initial value problem z′′+ 2z′+ 10z = 0, z(0) = 1,
z′(0) = 3.

Solution: Proceding as above, the forward transform gives

(s2Z − s− 3) + 2(sZ − 1) + 10Z = 0,

so that

Z =
s+ 5

s2 + 2s+ 10
=

s+ 5

(s+ 1)2 + 9
.

To find the inverse transform, we rewrite the right hand side as s+5
(s+1)2+9

= s+1
(s+1)2+9

+
4

(s+1)2+9
. We can then invert both terms to get

z = L−1{ s+ 1

(s+ 1)2 + 9
}+ L−1{ 4

(s+ 1)2 + 9
} = e−t cos(3t) +

4

3
e−t sin(3t).
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3. [14 points] In this problem we consider the differential

equation y′′ + ky′ + 16y = F0 cos(ωt).

a. [7 points] If the solution to the problem is shown in
the figure to the right when F0 = 1, what can you
say about the values of k and ω? Solve your equation
and explain how your solution would give this graph.

Solution: The simplest guess is that we are seeing
forcing of an undamped problem, so that k = 0,
at the natural frequency of the system, which is ω =

√
16 = 4. In this case

we’re solving y′′ + 16y = cos(4t). The complementary homogeneous solution is
yc = c1 cos(4t) + c2 sin(4t). The particular solution will be yp = at cos(4t) + bt sin(4t),
and because there are no odd derivatives in the problem we will find a = 0. Then
y′p = b sin(4t) + 4bt cos(4t) and y′′p = 8b cos(4t) − 16bt sin(4t); plugging in, we get

8b cos(4t) − 16bt sin(4t) + 16bt sin(4t) = cos(4t), so that b = 1
8 . Thus the general

solution is y = c1 cos(4t) + c2 sin(4t) + 1
8 t sin(4t), which will have a linearly growing

solution as shown in the figure.

b. [7 points] Now suppose that when F0 = 0 the phase
portrait for the equation is shown to the right. Which
of k = −4, k = 6, or k = 10 could we have used in
this case? Solve the problem with that value of k and
explain how your solution would give this graph.

Solution: We see that the eigenvalues are complex
with negative real part. Solving the characteristic equa-
tion, we have λ2 + kλ + 16 = 0, so that λ = −k

2 ±
1
2

√
k2 − 64. For this to have complex roots, −8 < k <

8, and for the real part to be negative, k > 0. Thus
we require that 0 < k < 8, and k = 6 is the only
option of those provided that works. In this case, the
roots of the equation are λ = −3 ± 1

2 i
√

28 = −3 ± i
√

7, so that the general solution is

y = c1e
−3t cos(

√
7 t) + c2e

−3t sin(
√

7 t), which is a decaying oscillatory solution that will
have inward spiral trajectories in the phase plane.

Alternately, we could see what the eigenvalues are for each of the indicated values
of k: if k = −4, λ2 − 4λ+ 16 = 0, and λ = 2± i12

√
48 = 2± i2

√
3, which would growing

spiral solutions. If k = 6, λ = −3± i
√

7, as shown above. If k = 10, λ = −5±6 = 1,−11.
This will not have oscillatory solutions, and so cannot give the spiral shown.
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4. [15 points] Note in this problem that L indicates the Laplace transform.

a. [5 points] If f(t) = t e−t, use the integral definition of the Laplace transform to find
F (s) = L{f(t)}.

Solution: We have

L{f(t)} =

∫ ∞
0

te−te−st dt =

∫ ∞
0

te−(s+1)t dt

= − 1

s+ 1
te−(s+1)t

∣∣∣∣t→∞
t=0

+
1

s+ 1

∫ ∞
0

e−(s+1)t dt

= 0− 1

(s+ 1)2
e−(s+1)t

∣∣∣∣t→∞
t=0

=
1

(s+ 1)2
.

b. [5 points] Use rules from the table of transforms to confirm your result in (a). Be sure
that it is clear what rules you are using and how they give the result you obtain.

Solution: There are several ways we could approach this. First, we could note that with
g(t) = t, L{g(t)} = 1

s2
= G(s), so that L{e−t · t} = G(s+ 1) = 1

(s+1)2
= L{te−t}.

Alternately, we could note that with g(t) = e−t, L{g(t)} = 1
s+1 = G(s). Then

L{tg(t)} = −G′(s) = 1
(s+1)2

= L{te−t}.

c. [5 points] The solution to y′′ + 3y′ + 2y = e−t with initial conditions y(0) = 0, y′(0) = 2
is y = e−t − e−2t + te−t. Transform the solution to the equation and the equation itself,
and show that the two expressions you get for Y (s) = L{y(t)} are the same.

Solution: The transform of the differential equation gives (−2+s2Y )+3sY +2Y = 1
s+1 ,

so that

Y =

(
2

s2 + 3s+ 2

)
+

(
1

(s+ 1)(s2 + 3s+ 2

)
=

2(s+ 1) + 1

(s+ 1)2(s+ 2)
=

2s+ 3

(s+ 1)2(s+ 2)
.

The transform of the given solution is

L{y} =
1

s+ 1
− 1

s+ 2
+

1

(s+ 1)2

=
(s+ 1)(s+ 2)− (s+ 1)2 + (s+ 2)

(s+ 1)2(s+ 2)
=

2s+ 3

(s+ 1)2(s+ 2)
,

which is the same.
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5. [14 points] In lab 3 we considered the nonlinear system

N ′ = γ(A−N(1 + P )), P ′ = P (N − 1).

We established that the equilibrium solutions to the system are (N,P ) = (A, 0) and (N,P ) =
(1, A − 1), and that near the latter the system is approximated by the linear second order
problem v′′ + γv′ + γA(A− 1)v = 0, where v is the small variation in P from the equilibrium
A− 1.

a. [4 points] Write the linear, second-order problem from above as a system of two linear,
first-order equations.

Solution: Let x = v and y = v′. Then x′ = y and y′ = −γy − γA(A − 1)x, or, if we

prefer a matrix formulation,

(
x
y

)′
=

(
0 1

−γA(A− 1) −γ

)(
x
y

)
.

b. [6 points] Suppose that we pick A and γ so that the characteristic equation of the linear
second-order equation has a repeated root. Find the solution to the linear second-order
equation in this case, and use your solution to write the solution to the system you found
in (a). (If you are stuck, assume that A = 2 and find a nonzero γ to finish the problem
with a one point penalty.)

Solution: Note that the characteristic equation of the linear equation is λ2+γλ+γA(A−
1) = 0, so that λ = −γ

2±
1
2

√
γ2 − 4γA(A− 1). If there is a repeated root, the argument of

the square root vanishes, so that we are left with λ = −γ
2 , repeated. The general solution

is then v = c1e
−γt/2 + c2te

−γt/2. This is just the top, x, component of the solution to
the system in (a). The bottom component is its derivative, y = v′ = −γ

2 c1e
−γt/2 +

c2(1 − γ
2 t)e

−γt/2. Thus the solution to the system is just x = c1e
−γt/2 + c2te

−γt/2,

y = −γ
2 c1e

−γt/2 + c2(1− γ
2 t)e

−γt/2, or, in matrix form,(
x
y

)
= c1

(
1
−γ

2

)
e−γt/2 + c2

((
1
−γ

2

)
t+

(
0
1

))
e−γt/2.

With A = 2, we have λ2 + γλ + 2γ = 0, so that λ = −γ
2 ±

1
2

√
γ2 − 8γ = −γ

2 ±
1
2

√
γ(γ − 8), so we have a repeated root if γ = 8 (or γ = 0, but we do not consider that).

In this case λ = −4, so that y = c1e
−4t + c2te

−4t.

c. [4 points] In Part B of the lab, we assumed that A was a function of time, that is,
A = A(t) = A0 + 2a cos(ωt). Suppose instead we picked A(t) = A0 tan(ωt), so that
v′′ + γv′ + q(t)v = 0, with q(t) = γA(t)(A(t)− 1). If we start with v(0) = 0.5, v′(0) = 0,
what is the longest interval on which the solution to the initial value problem is certain
to have a unique solution, and why? (Note that you cannot solve the equation by hand.)

Solution: We know that there will be a unique solution everywhere the coefficients of the
equation are continuous. In this case the only problem is where q(t) = γA0 tan(ωt)(A0 tan(ωt)−
1) is discontinuous, which is where t = nπ

2ω (for any odd integer n). Thus we are certain
of a unique solution for 0 ≤ t < π

2ω .
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6. [15 points] Consider a physical system modeled by the differential equation

x′′ + γx′ + kx = f(t),

where x(t) is the physical quantity being measured and γ and k are constants.

a. [4 points] If the physical system is underdamped, what can you say about the parameters
γ and k?

Solution: If the system is underdamped, we know that the roots of the characteristic
equation are complex. The characteristic equation is λ2 + γλ + k = 0, so that λ =
1
2(−γ±

√
γ2 − 4k), so we know that γ2 < 4k. Because this is a physical system we know

that both γ and k should be positive; clearly this condition also requires that k > 0.

b. [5 points] If x(0) = x0, x
′(0) = v0, and L{f(t)} = F (s), find the transform X(s) =

L{x(t)}.

Solution: Applying the Laplace transform to both sides of the differential equation, we
have

s2X − x0s− v0 + γsX − γx0 + kX = F (s),

so that

X =
x0s+ v0 + γx0
s2 + γs+ k

+
F (s)

s2 + γs+ k
.

c. [6 points] If f(t) = 0, assuming as in (a) that the system is underdamped, invert your
transform from (b) to find x(t). (If you are stuck, assume the equation is x′′+γx′+γ2x =
0.)

Solution: If the system is underdamped, then we know that the characteristic polynomial

λ2 + γλ+ k = (λ+ γ
2 )2 + k − γ2

4 . Then, with b =
√
k − γ2

4 and f(t) = 0, we have

x = L−1{X(s)} = L−1{x0s+ v0 + γx0
(s+ γ

2 )2 + b2
}

= L−1{
x0(s+ γ

2 )

(s+ γ
2 )2 + b2

+
v0 + γ

2x0

(s+ γ
2 )2 + b2

}

= x0e
−γt/2 cos(bt) +

1

b
(v0 +

γ

2
x0)e

−γt/2 sin(bt).

For the hint, the characteristic polynomial is p(s) = s2 + γs + γ2 = (s + γ
2 )2 + 3γ2

4 ,

so that we have the answer above with b =
√
3 γ
2 .
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7. [12 points] In the following we consider two linear, ho-

mogeneous, second-order, constant coefficient differential
equations, for y(t) and z(t). The phase portrait for the
equation for y(t) is shown to the right, and graphs of z(t)
for two different initial conditions are shown in the figure
to the right, below. Explain in a sentence or two why
each of the following cannot be true.

a. [3 points] The equation is y′′ − 3y′ + 2y = 0

Solution: In this case the characteristic equation
is λ2 − 3λ + 2 = (λ − 2)(λ − 1) = 0, so that λ = 1
or λ = 2, and solutions must grow away from the
origin.

b. [3 points] The general solution to the equation is y = c1e
−t + c2e

−2t.

Solution: Note that if we rewrite the equation as a system, the solution is

(
y
y′

)
=

c1

(
1
−1

)
e−t + c2

(
1
−2

)
e−2t, so that the straight line solutions have to be y = −x and

y = −2x, which is not what we see here (and the direction of fastest collapse is similarly
wrong).

c. [3 points] Given some initial conditions, the Laplace
transform Z(s) = L{z(t)} = 2s+4

s2+2s+5
.

Solution: We see from the form of the Laplace
transform that the characteristic polynomial is p(s) =
s2+2s+5 = (s+1)2+4, so that roots are s = −1±2i,
and solutions should be oscillatory, not exponen-
tially decaying to zero.

d. [3 points] Written as a system, the equation for z(t) is

(
x1
x2

)′
=

(
0 1
−4 0

)(
x1
x2

)
.

Solution: If this were the case we have λ = ±2i, so the general solution to the problem
is z = c1 cos(2t) + c2 sin(2t), which is a pure sinusoid. This is clearly not shown here.


