
Math 216 — Final Exam
17 December, 2019

This sample exam is provided to serve as one component of your studying for this exam in
this course. Please note that it is not guaranteed to cover the material that will
appear on your exam, nor to be of the same length or difficulty. In particular,
the sections in the text that were covered on this exam may be slightly different from those
covered by your exam.

This material is (c)2019, University of Michigan Department of Mathematics, and released under
a Creative Commons By-NC-SA 4.0 International License. It is explicitly not for distribution on
websites that share course materials.
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1. [12 points] Consider the system of differential equations x′ =

−2 0 0
0 1 −2
0 3 −4

x.

a. [6 points] Find the general solution to this system.1

Solution: Finding the eigenvalues of the coefficient matrix, we have det(A − λI) =
(−2 − λ)((1 − λ)(−4 − λ) + 6) = (−2 − λ)(λ2 + 3λ + 2) = (−2 − λ)(λ + 2)(λ + 1) = 0,
so that λ = −1 or λ = −2 (repeated). Then, if λ = −1, we have for the eigenvector−1 0 0

0 2 −2
0 3 −3

v = 0, so that v =

0
1
1

. If λ = −2,

0 0 0
0 3 −2
0 3 −2

v = 0, so that we

may take v =

1
0
0

 or v =

0
2
3

. Thus the general solution is

x = c1

0
1
1

 e−t + c2

1
0
0

 e−2t + c3

0
2
3

 e−2t.

b. [6 points] Now suppose that we consider only initial conditions in the yz-plane (that

is, we take x(0) =

 0
y0
z0

). Sketch the phase portrait for these initial conditions, in the

yz-plane.

Solution: If we are restricted to the yz-plane, we have only the first and last terms in
the general solution,

x = c1

0
1
1

 e−t + c3

0
2
3

 e−2t,

so that in the yz-plane, we have(
y
z

)
= c1

(
1
1

)
e−t + c3

(
2
3

)
e−2t.

We can sketch the phase portrait in this plane by drawing in the eigenvectors z = y and
z = 3

2y and the corresponding trajectories, which collaps to the first eigenvector and then
to the origin. This is shown below.
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1Possibly useful: det(

a 0 0
0 b c
0 d e

) = a(be− cd).



Math 216 / Final (17 December, 2019) page 3

2. [12 points] Consider the mass-spring model 2y′′ + 4y′ + 6y = 8 cos(3t).

a. [4 points] Explain why the following statement is true or false: “For any initial condition,
the long-term behavior of the mass is the same.”

Solution: This is true: we know that the solution to the problem will be y = yc + yp,
where yc is the solution to the complementary homogeneous problem and yp a particular
solution. All terms in yc will be exponentially decaying, because the model includes
damping. Therefore, as t→∞, we will end up with y → yp, for all initial conditions.

b. [4 points] Explain why the following statement is true or false: “The Laplace transform

of the steady state solution to the problem is L{yss} =
8s

(2s2 + 4s+ 6)(s2 + 9)
.”

Solution: This is false, but includes the steady state solution. Note that we know that
yss = a cos(3t) + b sin(3t), so that its forward transform will be L{yss} = as+3b

s2+9
, which

omits the characteristic polynomial in s.
We can also see this by noting that the indicated expression will decompose by

partial fractions as

4s

(s2 + 2s+ 3)(s2 + 9)
=
A(s+ 1) +B

(s+ 1)2 + 2
+
Cs+D

s2 + 2
,

the latter term of which gives the steady state while the first contributes to the response
to the initial conditions.

c. [4 points] Explain why the following statement is true or false: “If we change the forcing
term to f(t) = 8δ(t− 7), the solution y will have a discontinuity at t = 7.”

Solution: This is false. The introduction of the delta forcing will result in y having a
discontinuous slope at t = 7, but the solution itself will be continuous. We can also see
this by remembering that the effect of the delta function is to introduce an instantaneous
change of one unit in the momentum of the mass, which is proportional to its velocity.
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3. [10 points] Consider the initial value problem y′ = (y + 1)−1(y − 2)−1, y(0) = 1.

a. [4 points] Solve your differential equation to find an implicit solution for y, of the form
t = f(y).

Solution: Separating variables, we have (y2−y−2)y′ = 1, so that 1
3y

3− 1
2y

2−2y = t+C.
Applying the initial condition, 1

3 −
1
2 − 2 = C, so C = −13

6 . So

t =
1

6
y(2y2 − 3y − 12) +

13

6
.
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tb. [6 points] Suppose that the graph of the t(y) that you

found in (a) is shown to the right. Explain what this
tells you about the domain (in t) on which the solu-
tion to the initial value problem exists, and how that is
related to the theory of first-order equations.

Solution: We note that this gives us the solution to
the initial value problem if we reflect it across the line
t = y. The result will only be a function for −1 < y < 2, however; beyond that,
the result is not a function. Thus, from the graph, we can see that the domain on
which y lives is −1.167 < t < 3.333 (ok, from the graph we really can see only that
−1.(something small) < t < 3.(3 or 5); the exact values are −7

6 < t < 10
3 ). This makes

sense, as at those values of t, y takes on the values y = 2 and y = −1, which are the
values at which the equation becomes undefined and thus discontinuous. Our theory
indicates that where y′ = f(t, y) becomes discontinuous we no longer have any guarantee
of a solution, or of it being unique.
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4. [12 points] Consider the system of differential equations given by x′ = Ax, where A is a

real-valued 2× 2 matrix and x =

(
x1
x2

)
.

a. [6 points] Suppose that the eigenvalues and eigenvectors of A are λ = −1 ± i, with

v =

(
2± i

1

)
. If x solves x(0) =

(
1
0

)
, sketch the trajectory for x in the phase plane.

Solution: The general solution is x = c1

(
2 cos(t)− sin(t)

cos(t)

)
e−t+c2

(
cos(t) + 2 sin(t)

sin(t)

)
e−t,

so to satisfy the initial condition we may take c1 = 0 and c2 = 1. Then, as t increases we
see that y component of the trajectory increases, and it will be an inward spiral, giving
the trajectory shown below.

-1.0 -0.5 0.5 1.0
x1

-0.4

-0.2

0.2

0.4

x2

(If we want to outdo ourselves, we could also note that x′(0) =
(
1 1

)T
to give the initial

direction of the trajectory, thereby getting the orientation of the spiral shown above.)

b. [6 points] Suppose that eigenvalues and eigenvectors of A are λ1 = 1 and λ2 = 2, with

v1 =

(
1
2

)
and v2 =

(
−2
1

)
. If x(0) =

(
0
−1

)
, as t → ∞, which of the following is most

correct, and why? (i) x2 ≈ 2x1; (ii) x2 ≈ −1
2x1; (iii) x2 ≈ −1

2x1 − 1; (iv) x2 ≈ −1
2x1 − k,

with k > 1.

Solution: The phase portrait for the system will look something like the following.
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All trajectories end up parallel to the second eigenvector, which has slope m = −1
2 .

Looking at the dashed trajectory, we see that a trajectory through (0,−1), will be shifted
significantly below either of x2 = −1

2x1 or x2 = −1
2x1 − 1, so (iv) must be correct.
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5. [12 points] In lab 6 we considered the Fitzhugh-Nagumo model for the behavior of a neuron,

v′ = v − 1

3
v3 − w + Iext, τw′ = v + a− bw.

In this problem we analyze this with the parameters τ = 1, a = 1
3 , and b = 1.

a. [3 points] Find the v- and w-nullclines, and show that there is a single critical point
(vc, wc) in this case. Find the critical point in terms of the externally applied voltage Iext.

Solution: The w-nullcline occurs when w′ = 0, and thus is w = v+ 1
3 , The v-nullcline is

when v′ = 0, so when 0 = v− 1
3v

3−w+Iext. Plugging in for w, we have 0 = −1
3v

3− 1
3+Iext,

so that the critical point is when v = vc = 3
√

3Iext − 1 and w = wc = 1
3 + vc.

b. [3 points] Linearize the system at the critical point (write your linearization in terms of
vc and wc—do not plug in the values you found for vc and wc). How is the solution to
your linearized system related to the solution of the original nonlinear system?

Solution: The Jacobian of the system is J =

(
1− v2 −1

1 −1

)
, so J(vc, wc) =

(
1− v2c −1

1 −1

)
and with (v, w) = (vc, wc) + (x, y) the linearization is

x′ =

(
x
y

)′
=

(
1− v2c −1

1 −1

)(
x
y

)
.

The solution (x, y) to the linear system tells us the behavior of the nonlinear system
when trajectories are sufficiently near the critical point (vc, wc). (Note that because the
nonlinearity is strictly polynomial, we know that the system is almost linear and the
linearization therefore makes sense.)

c. [6 points] Show that the critical point is in this case is always stable. Determine any
values of vc or wc at which the behavior at the critical point changes. Explain how this
result is different from that which you saw in lab.

Solution: The eigenvalues of J(vc, wc) are given by det(J(vc, wc) − λI) = 0, or (1 −
v2c − λ)(−1 − λ) + 1 = λ2 + v2cλ + v2c = 0. Thus, using the quadratic formula, λ =

−1
2v

2
c ± 1

2

√
v4c − 4v2c = −1

2v
2
c ± 1

2v
2
c

√
1− 4v−2c . Because of the square, the leading term

is always negative. Then note that 4v−2c > 0, so the square root is either real and less
than one or complex. Thus the eigenvalues are either both real and negative (if |vc| > 2)
or complex with negative real part (if |vc| < 2); at |vc| = 2 the behavior changes from a
stable node to a stable spiral. This is different from what we saw in lab, because in that
case there was a value of vc (and hence Iext) at which the critical point went from stable
to unstable as well.

Note that the above is predicated on the assumption that vc 6= 0. If vc = 0, we have
the degenerate case λ = 0, twice. This indicates that the linear system is stable (but not
asymptotically stable), and in this case we aren’t able to speak to the stability of the
nonlinear system.
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6. [12 points] Consider the nonlinear system

x′ = 3x− y − x2, y′ = −α+ x− y,

where α is a real-valued parameter.

a. [4 points] Find all critical points for the system, and show that for α > −1 there are two
critical points, if α = −1 there is one, and if α < −1 there are none.

Solution: From the second equation, at critical points we require y = x − α. Plugging
into the first, we have 0 = 3x− (x− α)− x2, so x2 − 2x− α = (x− 1)2 − 1− α = 0, and
x = 1 ±

√
1 + α. If α > −1 there are two critical points, x = x1,2 = 1 ±

√
1 + α (with

y = x1,2 − α); if α = −1, there is one, xc = 1 (with y = 0); and if α < −1 there are no
real solutions.

b. [8 points] Let α = 0: then the system has two critical points, (0, 0) and (2, 2). Sketch a
phase portrait for the nonlinear system by linearizing at critical points and determining
the resulting behavior in the phase plane.

Solution: Note that the Jacobian for the system is J =

(
3− 2x −1

1 −1

)
. If α = 0, the

critical points are (0, 0) and (2, 2). At (0, 0) and (2, 0), the Jacobians are, respectively,

J(0, 0) =

(
3 −1
1 −1

)
, and J(2, 2) =

(
−1 −1
1 −1

)
. The eigenvalues of the first are given by

(3− λ)(−1− λ) + 1 = λ2 − 2λ− 2 = (λ− 1)− 3 = 0, so λ = 1±
√

3. Using the second
row of the system, the resulting eigenvectors satisfy v1 + (−2 ∓

√
3)v2 = 0, so that we

may take v =

(
2±
√

3
1

)
≈
(

2± 1.75
1

)
. Thus at (0, 0) we have a saddle point with

outgoing trajectories along a line with slope approximately 1
4 , and incoming along a line

with slope approximately 4.
Similarly, at (2, 2) eigenvalues are given by (λ+ 1)2 + 1 = 0, so that λ = −1± i. At

(1, 0) we get a slope (x, y)′ = (−1, 1), so this is an inward counter-clockwise spiral. The
resulting phase portrait is shown below, with the trajectories from the linear system as
solid curves and some representative nonlinear trajectories with dashed curves.
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7. [15 points] DO complete this problem if you have NOT completed the mastery assessment.
DO NOT complete it if you have completed the mastery assessment.
Find explicit, real-valued solutions for each of the following, as indicated.

a. [7 points] Find the solution to the initial value problem W ′ =
−W + 5t

2
, W (0) = 6.

Solution: This is linear, but not separable. Rewriting in standard form, we have
W ′+ 1

2W = 5
2 t, so that an integrating factor is µ = et/2. Multiplying by µ and integrating,

we have et/2W = 5
2

∫
tet/2 dt. Integrating the right-hand side by parts, we have

5

2

∫
tet/2 dt = 5tet/2 − 10et/2 + C,

so that W = 5t− 10 + Ce−t/2. Applying the initial condition, we have 6 = −10 + C, so
that C = 16, and

W = 5(t− 2) + 16e−t/2.

b. [8 points] Find the general solution to the system of first-order linear differential equations,
x′ = −8x− y, y′ = 45x+ 4y.

Solution: In matrix form, this is x′ = Ax, with A =

(
−8 −1
45 4

)
. We look for solu-

tions x =
(
x y

)T
= veλt. Then λ and v are the eigenvalues and eigenvectors of A.

Eigenvalues satisfy

(−8− λ)(4− λ) + 45 = λ2 + 4λ− 32 + 45 = (λ+ 2)2 − 4 + 13 = (λ+ 2)2 + 9 = 0,

so that λ = −2±3i. Then, if λ = −2+3i, the eigenvector satisfies (−6−3i)v1−v2 = 0, so

that we may take v =

(
−1

6 + 3i

)
. Separating the real and imaginary parts of the complex

valued solution x = veλt, we get the general solution

x =

(
x
y

)
= c1

(
− cos(3t)

6 cos(3t)− 3 sin(3t)

)
e−2t + c2

(
− sin(3t)

3 cos(3t) + 6 sin(3t)

)
e−2t.

If we instead used the eigenvector v =
(
−6 + 3i 45

)T
, we get the general solution

x = c1

(
−6 cos(3t)− 3 sin(3t)

45 cos(3t)

)
e−2t + c2

(
3 cos(3t)− 6 sin(3t)

45 sin(3t)

)
e−2t.
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8. [15 points] DO complete this problem if you have NOT completed the mastery assessment.
DO NOT complete it if you have completed the mastery assessment.
Find explicit, real-valued solutions for each of the following, as indicated.

a. [7 points] Find the general solution Q(t) to the differential equation Q′′(t) − 2Q′(t) +
10Q(t) = 30t.

Solution: We know that the general solution will be Q = Qc+Qp, where Qc is the general
solution to the complementary homegeneous solution and Qp is a particular solution.
Looking for Qc = eλt, the characteristic equation for λ is λ2−2λ+ 10 = (λ−1)2 + 9 = 0,
so that λ = 1±3i. Thus Qc = c1e

t cos(3t)+c2e
t sin(3t). To find Qp, we guess Qp = at+b,

so that (plugging in) −2a + 10at + 10b = 30t. Thus a = 3 and −6 + 10b = 0, so that
b = 3

5 . The general solution is thus

Q = c1e
t cos(3t) + c2e

t sin(3t) + 3t+
3

5
.

b. [8 points] Find the solution to the inital value problem v′′(t) − 8v′(t) + 25v(t) = 3u7(t),
v(0) = 0, v′(0) = 6.

Solution: Because of the step function on the right-hand side, we choose to use Laplace
transforms for this problem. With V (s) = L{v(t)}, we have

s2V − 6− 8sV + 25V =
3

s
e−7s,

so that

V =
6

s2 − 8s+ 25
+

3

s(s2 − 8s+ 25)
e−7s.

Noting that s2 − 8s + 25 = (s − 4)2 + 9, we can invert the first term without further
calculation:

L−1{ 6

(s− 4)2 + 9
} = 2e4t sin(3t).

Then, for the second term, we use partial fractions, letting 3
s(s2−8s+25)

= A
s + B(s−4)+C

(s−4)2+9
.

Without the exponential, we then have

L−1{ 3

s((s− 4)2 + 9)
= L−1{A

s
}+ L−1{ B(s− 4)

(s− 4)2 + 9
}+ L−1{ C

(s− 4)2 + 9
}

= A+Be4t cos(3t) +
1

3
Ce4t sin(3t),

so that

v(t) = 2e4t sin(3t) +

(
A+Be4(t−7) cos(3(t− 7)) +

1

3
Ce4(t−7) sin(3(t− 7))

)
u7(t).

Finding A, B, and C, we have A((s − 4)2 + 9) + Bs(s − 4) + Cs = 3, so that with
s = 0, A = 3

25 ; matching terms in s2, B = −A = − 3
25 ; and matching terms in s,

−8A− 4B + C = 0, so that C = 12
25 .


