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Instructions:

1. For each problem, put all of your work in the indicated box (if possible, otherwise, indicate clearly in
the box where additional details can be found on your paper). To receive credit you must show all of
your work for each problem, unless clearly indicated in the problem. Work on scrap paper will not be
graded, so make sure all of your important work and answers are written on the test paper.

2. No calculators, phones, smartwatches. No notecards or notesheets.

3. The LSA Community Standards of Academic Integrity are in force, and by taking this exam you agree to
be bound by them. DO NOT CHEAT!
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1. Consider an “RLC” circuit in which the capacitor charge Q(t) satisfies LQ′′ + RQ′ + C−1Q = E(t)
where L, R, C are the inductance (Henries), resistance (Ohms), and capacitance (Farads), and where
E(t) is a variable source of voltage (Volts). Suppose that R = 2 Ohms and C = 1/5 Farads, and that
the voltage source is sinusoidal: E(t) = cos(5t).

(a) (3 Points.) Find the steady-state periodic response, keeping the inductance L as a variable pa-
rameter in your answer.
Solution: to find the steady-state periodic response we use the method of undetermined coe-
ficients: Q(t) = A cos(5t) + B sin(5t). Then Q′(t) = −5A sin(5t) + 5B cos(5t) and Q′′(t) =
−25A cos(5t)− 25B cos(5t), so substitution into LQ′′ + 2Q′ + 5Q = cos(5t) gives

(5− 25L)A + 10B = 1
−10A + (5− 25L)B = 0

where the first line comes from the terms proportional to cos(5t) and the second line comes from
the terms proportional to sin(5t). Solving for A and B gives

A =
5− 25L

(5− 25L)2 + 100
and B =

10
(5− 25L)2 + 100

.

The steady-state periodic response is therefore

Q(t) =
5− 25L

(5− 25L)2 + 100
cos(5t) +

10
(5− 25L)2 + 100

sin(5t).

(b) (2 Points.) Find the amplitude of the steady-state periodic response from part (a), and then
determine the value of inductance L that maximizes it.
Solution: the steady-state response amplitude is R =

√
A2 + B2 or

R =

√
(5− 25L)2 + 100

[(5− 25L)2 + 100]2
=

1√
(5− 25L)2 + 100

.

Maximizing this is the same as minimizing the quantity under the radical, which occurs when
5− 25L = 0 or

L = 1
5 = 0.2 Henries.
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2. (5 Points.) For certain initial conditions, the displacement x(t) of a mass from equilibrium in a me-
chanical system without any damping or forcing is given by

x(t) = −
√

3 cos(4πt) + sin(4πt).

Write x(t) in phase/amplitude form and use your answer to find the second positive time t > 0 at
which the mass passes equilibrium. Note that for some angles in the first quadrant we have

θ 0 π
6

π
4

π
3

π
2

cos(θ) 1
√

3
2

√
2

2
1
2 0

sin(θ) 0 1
2

√
2

2

√
3

2 1

Solution: the amplitude is

R =

√√
3

2
+ 12 =

√
4 = 2,

and the phase satisfies cos(δ) = −
√

3/2 and sin(δ) = 1/2. So δ is an angle in the second quadrant.
Since arccos(·) returns an angle in the first or second quadrant, we can take δ = arccos(−

√
3/2).

Equivalently, we can relate δ to an angle θ in the first quadrant by δ + θ = π, for which cos(θ) =

cos(π − δ) = − cos(δ) =
√

3/2 and sin(θ) = sin(π − δ) = sin(δ) = 1/2, so using the given function
values, θ = π/6. Hence δ = π − π/6 = 5π/6. So, the phase/amplitude form is

x(t) = 2 cos(4πt− 5π/6).

We have x(t) = 0 whenever 4πt− 5π/6 is an odd multiple of π/2, i.e., whenever 8t− 5/3 is an odd
integer, i.e., whenever 8t = 5/3 plus an odd integer. The first positive t corresponds to taking −1 for
the odd integer, and the second positive t corresponds to taking 1 for the odd integer. So, the time we
seek satisfies 8t = 5/3 + 3/3 = 8/3 or

t = 1
3 .
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3. In a lab there are five identical “RLC” circuits in each of which the capacitor charge satisfies LQ′′ +
RQ′ + C−1Q = E(t) with L = 3 Henries, R = 4 Ohms, C = 0.5 Farads. The five circuits are driven
by five time-dependent voltage sources E(t) and have different amounts Q(0) of initial charge on the
capacitor and different amounts Q′(0) of current flowing at time zero, according to this table:

Circuit Capacitor charge Voltage source E(t) Q(0) Q′(0)
1 Q = Q1(t) E1(t) = 1/(1 + t2) Volts 0.25 Coul. 0 Amp.
2 Q = Q2(t) E2(t) = 1/(1 + t2) Volts 0 Coul. 1 Amp.
3 Q = Q3(t) E3(t) ≡ 6 Volts 0.25 Coul. 0 Amp.
4 Q = Q4(t) E4(t) = (25 + 24t2)/(1 + t2) Volts 1 Coul. 1 Amp.
5 Q = Q5(t) For E5(t), see part (d) 0 Coul. 0 Amp.

(a) (3 Points.) Express Q4(t) in terms of Q1(t), Q2(t), and/or Q3(t).
Solution: we apply the superposition principle for nonhomogeneous linear ODE, noticing that
each equation has exactly the same linear operator LD2 + RD + C−1 on the left-hand side. So,
we write Q4(t) = aQ1(t) + bQ2(t) + cQ3(t) and try to determine a, b, c. The initial condition
Q4(0) = 1 then reads 1

4 a + 1
4 c = 1, and Q′4(0) = 1 reads b = 1. To fully determine a, c, we require

that the differential equation for Q4(t) holds, which means that

25 + 24t2

1 + t2 = E4(t) = aE1(t) + bE2(t) + cE3(t) =
a

1 + t2 +
1

1 + t2 + 6c.

The numerator over the common denominator of 1 + t2 gives us the equation 24(1 + t2) =
a + 6c(1 + t2), so from the coefficients of t2 we get that c = 4. Taking the constant terms, or
going back to Q4(0) = 1, one finds that a = 0. So a = 0, b = 1, and c = 4, and therefore by
superposition,

Q4(t) = Q2(t) + 4Q3(t).

(b) (2 Points.) Find limt→+∞[Q1(t)−Q2(t)].
Solution: The difference ∆Q(t) := Q1(t) − Q2(t) is a solution of the associated homogeneous
equation L∆Q′′ + R∆Q′ + C−1∆Q = 0. Since the coefficients are all positive, ∆Q(t) is a transient
response that decays to zero as t → +∞. It is not necessary to know what the initial conditions
are, nor is it necessary to use the fact that the forcing function is E(t) = 1/(1 + t2). We conclude
that

lim
t→+∞

[Q1(t)−Q2(t)] = 0.

(c) (2 Points.) Would the answer to part (b) be different if R = 0 Ohms instead? Why or why not?
Solution: yes it would be different, because then the difference Q1(t)− Q2(t) satisfies L∆Q′′ +
C−1∆Q = 0, the general solution of which is simple harmonic motion with natural frequency of
vibration Ω0 = 1/

√
LC; this does not decay to zero as t → +∞, so in general the limit of ∆Q(t)

as t→ +∞ does not exist.

(d) (3 Points.) Circuit number 5 has a “pulsed” voltage source E(t) that is zero except on the time
interval 1 < t < 6 seconds, at the beginning of which it is suddenly switched on to 10 Volts,
and during which it increases exponentially following E(t) = 10eb(t−1) for some rate b sec−1.
If instantaneously after switching on, E′(1) = 30 Volts/sec, use the definition of the Laplace
transform to find L {E(t)} (but don’t solve for Q5(t)).
Solution: over the time interval 1 < t < 6, we have E(t) = 10eb(t−1), and since this implies that
E′(1) = 10b, we need b = 3 sec−1 to match a rate of change of 30 Volts/sec. Then, using the
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definition,

L {E(t)} =
∫ 6

1
E(t)e−st dt =

∫ 6

1
10e3(t−1)e−st dt = 10e−3

∫ 6

1
e(3−s)t dt = 10e−3 e(3−s)6 − e(3−s)1

3− s
.
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4. (5 Points.) Using the method of undetermined coefficients, solve the initial-value problem y′′ − 4y =
12e−2t, y(0) = 0, y′(0) = 1 for y(t).

Solution: first we solve the associated homogeneous problem: y′′ − 4y = 0. The characteristic equa-
tion reads λ2 − 4 = 0 so λ = 2,−2. The complementary function is therefore yc(t) = c1e2t + c2e−2t.
Next we find a particular solution using the method of undetermined coefficients. Because e−2t is a
solution of the associated homogeneous problem, we assume the form y = Y(t) = Ate−2t. Then,
some computation gives:

Y′(t) = Ae−2t − 2Ate−2t,

Y′′(t) = −4Ae−2t + 4Ate−2t,

so substitution gives [−4Ae−2t + 4Ate−2t]− 4[Ate−2t] = 12e−2t so A = −3. The general solution is
therefore

y = yc(t) + Y(t) = −3te−2t + c1e2t + c2e−2t.

Likewise,
y′ = −3e−2t + 6te−2t + 2c1e2t − 2c2e−2t.

Therefore, y(0) = c1 + c2 and y′(0) = −3 + 2c1 − 2c2. Imposing the initial conditions then gives
c1 = 1 and c2 = −1. The solution is

y(t) = −3te−2t + e2t − e−2t.
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5. (6 Points.) The differential equation t2y′′ − 2ty′ + 2y = 0 has the following two solutions: y = t and
y = t2. Assuming that t > 0, solve the initial-value problem t2y′′ − 2ty′+ 2y = t2, y(1) = 1, y′(1) = 0.

Solution: we know that the general solution is y(t) = yc(t) + Y(t) where yc(t) = c1t + c2t2 is the
complementary function (because t and t2 are linearly independent, in fact W[t, t2](t) = t2 which is
nonzero on the interval (0,+∞) containing the initial point t = 1). To find a particular solution, we
need to use the method of variation of parameters. Putting the problem in standard form (divide by
t2), it reads y′′ − 2t−1y′ + 2t−2y = g(t) = 1. Looking for a particular solution in the form Y(t) =
u1(t)t + u2(t)t2, we solve the system

tu′1(t) + t2u′2(t) = 0

u′1(t) + 2tu′2(t) = g(t) = 1

for u′1(t) and u′2(t). We get u′1(t) = −1 and u′2(t) = t−1. Any antiderivatives will do to obtain a
particular solution, so we take u1(t) = −t and u2(t) = ln(|t|). So the particular solution we get is
Y(t) = −t2 + t2 ln(|t|). The general solution is therefore

y(t) = −t2 + t2 ln(|t|) + c1t + c2t2,

and taking a derivative,
y′(t) = −2t + t + 2t ln(|t|) + c1 + 2c2t.

Therefore, y(1) = −1 + c1 + c2 and y′(1) = −1 + c1 + 2c2. Imposing the initial conditions then gives
c1 = 3 and c2 = −1, so

y(t) = −t2 + t2 ln(|t|) + 3t− t2

= −2t2 + t2 ln(|t|) + 3t.

In all of these formulas, we could have written ln(t) instead of ln(|t|) because t > 0.
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6. (4 Points.) Consider the system

x′ =
(

1 2
2 1

)
x +

(
g(t)

0

)
, x(t) =

(
x(t)
y(t)

)
,

and assume that x(t) and y(t) satisfy the initial conditions x(0) = 0 and y(0) = 1. Let g(t) be a
function having a Laplace transform denoted G(s), for s large enough. Find X(s) = L {x(t)} and
Y(s) = L {y(t)} in terms of G(s). Your answers should be in terms of s.

The equations of the system read:

x′ = x + 2y + g(t)

y′ = 2x + y

Taking the Laplace transform of both equations using the initial conditions:

sX(s) = X(s) + 2Y(s) + G(s)
sY(s)− 1 = 2X(s) + Y(s)

We rearrange this as a linear system for X(s) and Y(s):(
1− s 2

2 1− s

)(
X(s)
Y(s)

)
=

(
−G(s)
−1

)
.

Taking the inverse matrix (using the fact that its determinant is s2 − 2s− 3 = (s− 3)(s + 1)) we have(
X(s)
Y(s)

)
=

1
(s− 3)(s + 1)

(
1− s −2
−2 1− s

)(
−G(s)
−1

)
.

So,

X(s) =
(s− 1)G(s) + 2
(s− 3)(s + 1)

, Y(s) =
2G(s) + s− 1
(s− 3)(s + 1)

.
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7. (5 Points.) In solving an initial-value problem for a certain linear second-order ODE by Laplace trans-
forms, we arrive at

Y(s) =
s

s3 − 3s2 + 9s− 27
=

s
(s− 3)(s2 + 9)

.

What is y(t)?

Solution: We set up the partial-fraction expansion

Y(s) =
s

s3 − 3s2 + 9s− 27
=

A
s− 3

+
Bs + C
s2 + 9

.

Multiplying through by the common denominator gives s = A(s2 + 9) + (Bs + C)(s − 3). Setting
s = 3 gives A = 1

6 . Then setting s = 0 gives 0 = 9
6 − 3C so C = 1

2 . Matching the coefficients of the
terms proportional to s gives 1 = −3B + C = −3B + 1

2 so B = − 1
6 . Therefore,

Y(s) =
1
6

1
s− 3

− 1
6

s
s2 + 9

+
1
2

1
s2 + 9

.

Multiplying and dividing the last term by 3 then allows us to use the table of transforms to find

y(t) =
1
6

e3t − 1
6

cos(3t) +
1
6

sin(3t).
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8. True or false? Write out the full word “true” or “false” and provide a brief justification (2 points each).

(a) Variation of parameters is applicable to find a solution of y′′ + sin(y) = tan(t).
False. This is a nonlinear problem.

(b) The function f (t) = e
√

t has a Laplace transform.

True. e
√

t is continuous for t ≥ 0, and the inequality
√

t ≤ t holds for all t ≥ 1, so also e
√

t ≤ et

holds for all t ≥ 1. Therefore the transform exists at least for s > 1 (actually, for s > 0).

(c) There is a piecewise-continuous function of exponential order having Laplace transform F(s) =
s− 1
s + 1

for s > −1.

False. The Laplace transform of every piecewise-continuous function of exponential order tends
to zero as s → +∞, but F(s) → 1 as s → +∞ instead. Another way to see this is to write F(s)
in the form F(s) = 1 − 2/(s + 1). Then from the table, f (t) = δ(t) − 2e−t, but δ(t) is not a
piecewise-continuous function (it is not even a function, just a generalized function).

(d) An unforced mechanical system described by the ODE 2y′′ + y′ + 2y = 0 is underdamped.
True. The discriminant of the characteristic equation 2λ2 + λ + 2 = 0 is 12 − 4 · 2 · 2 = −15 <
0. Therefore we have distinct complex-conjugate roots and by definition the system is under-
damped.

(e) A sinusoidally-forced mechanical system described by the ODE 2y′′ + y′ + 2y = F0 cos(Ωt) has
a steady state sinusoidal solution with an amplitude that can be an arbitrarily large multiple of
|F0| if Ω is chosen appropriately.
False. This system has positive damping γ = 1, so the gain has a finite maximum value.
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