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28 March, 2013

This sample exam is provided to serve as one component of your studying for this exam in
this course. Please note that it is not guaranteed to cover the material that will
appear on your exam, nor to be of the same length or difficulty. In particular,
the sections in the text that were covered on this exam may be slightly different from those
covered by your exam.
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1. [15 points] For this problem note that the general solution to y′′ + 5y′ + 4y = 0 is y =
c1e
−t + c2e

−4t. (Note that minimal partial credit will be given on this problem.)

a. [7 points] Find a real-valued general solution to

y′′ + 5y′ + 4y = 3e−4t.

Solution: We know the general solution is y = yc + yp. We use the Method of Unde-
termined Coefficients to find yp, guessing yp = Ate−4t, after multiplying our first guess
(yp = Ae−4t) by t because the forcing term is present in our homogeneous solution. Then
y′p2 = Ae−4t − 4Ate−4t and y′′p2 = −8Ae−4t + 4Ate−4t, so that on plugging in we get

(−8A+ 5A)e−4t = 3e−4t,

so that −3A = 3, and A = −1.
Thus the general solution is

y = c1e
−t + c2e

−4t − te−4t.

If we use Variation of Parameters, we have u′1e
−t + u′2e

−4t = 0 and −u′1e−t − 4u′2e
−4t =

3e−4t. Solving, we find u′2 = −1 and u′1 = e−3t, so that u1 = −1
3e
−3t and u2 = −t, and

yp = −1
3e
−4t − te−4t.

b. [8 points] Find the solution to the

y′′ + 5y′ + 4y = 16t, y(0) = 2, y′(0) = −2.

Solution: We know the general solution is y = yc + yp. We use the Method of Undeter-
mined Coefficients to find yp, guessing yp = A+Bt. Plugging in,

5B + 4A+ 4Bt = 16t,

so that B = 4 and A = −5. Thus the general solution is y = c1e
−t + c2e

−4t − 5 + 4t.
Applying the initial conditions, we have

y(0) = c1 + c2 − 5 = 2, and

y′(0) = −c1 − 4c2 + 4 = −2.

Thus c1 + c2 = 7 and −c1− 4c2 = −6. Adding the two, we have −3c2 = 1, so c2 = −1/3.
Then the first gives c1 = 22/3, and our solution is

y =
22

3
e−t − 1

3
e−4t − 5 + 4t.

We can, of course find yp with Variation of Parameters. Then u′1e
−t + u′2e

−4t = 0 and
−u′1e−t − 4u′2e

−4t = 16t. Solving, we find u′2 = −16
3 te

4t, so that u2 = (13 −
4
3 t)e

4t and
u′1 = 16

3 te
t, so that u1 = 16

3 (−1 + t)et. Then yp = −5 + 4t, as before.
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2. [12 points] The eigenvalues of the matrix A =

(
1 5
−5 7

)
are λ = 4 ± 4i. Use the eigenvalue

method to find a real-valued general solution to the system x′ = Ax. (Note that minimal
partial credit will be given on this problem.)

Solution: We know that a complex-valued solution to the system is x = ve(4+4i)t, where
v is the eigenvector corresponding to λ = 4 + 4i, and that the real and imaginary parts of
this solution will themselves be linearly independent solutions to the system. The eigenvector

v =
(
v1 v2

)T
is given by(

1− λ 5
−5 7− λ

)
v =

(
−3− 4i 5
−5 3− 4i

)(
v1
v2

)
=

(
0
0

)
.

We know that the two rows of this algebraic system are equivalent, because we are at an
eigenvalue. The first gives (−3 − 4i)v1 + 5v2 = 0, so we may take v1 = 5 and v2 = 3 + 4i.
Then a complex-valued solution to the system is

ve(4+4i)t =

(
5

3 + 4i

)
e4t(cos(4t) + i sin(4t))

=

(
5 cos(4t) + 5i sin(4t)

(3 cos(4t)− 4 sin(4t)) + i(4 cos(4t) + 3 sin(4t))

)
e4t.

Separating the real and imaginary parts of this, we have the general solution

x = c1

(
5 cos(4t)

3 cos(4t)− 4 sin(4t)

)
e4t + c2

(
5 sin(4t)

4 cos(4t) + 3 sin(4t)

)
e4t.

Similarly, if we use the second equation to find v, we have v =

(
3− 4i

5

)
, and

x = c1

(
3 cos(4t) + 4 sin(4t)

5 cos(4t)

)
e4t + c2

(
−4 cos(4t) + 3 sin(4t)

5 sin(4t)

)
e4t.

Using λ = 4−4i, we get v =

(
5

3− 4i

)
and, reversing the sign of c2, the same general solution

as before.
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3. [16 points] Consider the system

x′1 = x1 + 2x2

x′2 = 3x1

a. [8 points] Find a real-valued general solution to this system.

Solution: Letting x =
(
x1 x2

)T
, this is equivalent to x′ = Ax with the coefficient

matrix A =

(
1 2
3 0

)
. Eigenvalues of A are given by det

(
1− λ 2

3 −λ

)
= λ2 − λ − 6 =

(λ−3)(λ+2) = 0, so that eigenvalues are λ = −2 and λ = 3. Then eigenvectors v satisfy
the equation (

1− λ 2
3 −λ

)
v = 0,

so that if λ = −2 we have v =
(
−2 3

)T
, and if λ = 3, v =

(
1 1

)T
. Thus the general

solution is

x =

(
x1
x2

)
= c1

(
−2
3

)
e−2t + c2

(
1
1

)
e3t =

(
−2c1e

−2t + c2e
3t

3c1e
−2t + c2e

3t

)
.

This can also be solved by elimination: x′2 = 3x1, so x′′2 = 3x′1. Then the first equation
becomes 1

3x
′′
2 = 1

3x
′
2 + 2x2, or x′′2 − x′2 − 6x2 = 0. With x2 = ert we have r2 − r − 6 = 0,

so r = −2 and 3. Then x2 = k1e
−2t + k2e

3t. With x1 = 1
3x
′
2, x1 = −2

3k1e
−2t + k2e

3t,
which is the same as we found above with k1 = 3c1 and k2 = c2.

b. [4 points] Find the particular solution if x1(0) = 0.10, x2(0) = 0.35.

Solution: We have x1(0) = −2c1 + c2 = 0.1 and x2(0) = 3c1 + c2 = 0.35. Subtracting
the first from the second we get c1 = 0.05. Then either equation gives c2 = 0.20, and our
particular solution is (

x1
x2

)
=

(
−0.10 e−2t + 0.20 e3t

0.15 e−2t + 0.20 e3t

)
.
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c. [4 points] Briefly explain why the direction field and solution trajectory shown to the
right could not match this system and your solution from (b).

Solution: In the long run the negative exponentials
in the solution we found in (b) will decay to zero
and therefore we expect the solution to look like

x =
(
0.2e3t 0.2e3t

)T
. Thus the trajectory should

end up on the line y = x (x2 = x1). This is not
shown in the figure to the right. Also note that
when x1 = 0 the system predicts that trajectories
will be horizontal, and when x2 = 0 trajectories will
have slope 3, neither of which appear to be the case
here.
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4. [12 points] Three linear constant-coefficient homogeneous systems are described below. In-
cluded in the description is one of the following three charateristics; for each, specify the
missing two characteristics by circling the correct answers.

1. whether it is a node, saddle point or spiral point, and

2. whether the equilibrium point (0, 0) is asymptotically stable, stable or unstable;

3. the sign of the constant a in the system.

No explanation is necessary for your answers.
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a. [4 points] The system x′ = Ax having direction field
and representative trajectories in the phase plane shown

in the figure to the right, if A =

(
1 −2
a 1

)
and a > 0.

This is a
node saddle point spiral point

and is
asymptotically stable stable unstable

Solution: From the figure we see that this is a spiral point. We know the eigenvalues
of A are given by (λ − 1)2 + 2a = 0, so λ = 1 ±

√
2ai, and trajectories increase away

from the equilibrium point, indicating that it is unstable.

b. [4 points] The system x′ = Ax if the equilibrium point is a saddle point and the eigen-
values are λ = 3 and λ = a.
The equilibrium point is

asymptotically stable stable unstable
and a is

< 0 > 0

Solution: Saddle points are unstable, and have real eigenvalues with opposite signs, so
a < 0.
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c. [4 points] The system x′1 = −2x1 + ax2, x
′
2 = x1 − 2x2

whose solution with the initial conditions x1(0) = 0,
x2(0) = 1 is shown in the figure to the right, if the
equilibrium point is asymptotically stable.
The equilibrium point is a

node saddle point spiral point
and a is

< 0 > 0

Solution: The solution shown has no oscillatory characteristic, so this must be a node

with both eigenvalues real and negative. Then the coefficient matrix A =

(
−2 a
1 −2

)
,

so that eigenvalues are given by det(A − λI) = (λ + 2)2 − a = 0. For real eigenvalues,
λ = −2±

√
a must have a > 0 (and a < 4, for that matter).
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5. [16 points] Consider a clown on a spring in a boat, as
suggested by the figure to the right. At time t = 0 we
place a large box in the boat. Then, with some not en-
tirely unreasonable assumptions, the displacement x1 of
the boat and x2 of the clown are given by

x′′1 = −425x1 + 75x2 − 35

x′′2 = 150x1 − 150x2.

(Here, x1 and x2 are measured in meters and t in sec-

onds.) Letting A =

(
−425 75
150 −150

)
, the eigenvalues and

eigenvectors of A are λ = −600 and λ = −125 with

v =

(
−3
1

)
and v =

(
1
6

)
.

a. [6 points] What are the natural frequencies at which the boat and clown will oscillate?
Explain.

Solution: Letting x =

(
x1
x2

)
and A =

(
−3 1
2 −2

)
, we guess x = vert, so that

r2v = Av, and therefore r2 = λ, the eigenvalues of A. Thus r = ±i
√

600 or r =
±i
√

125, and solutions will look like cosines and sines of
√

600 t and
√

125 t. Thus
the frequencies are ω1 =

√
600(≈ 24) and ω2 =

√
125(≈ 11). (Note that if we were

recently indoctrinated by some other field we might also talk about the ordinary
frequency, f = ω/2π.)

b. [6 points] Find the general solution to the homogeneous system associated with this
system.

Solution: Given the eigenvalues and eigenvectors provided, we have

xc = (c1 cos(
√

600 t) + c2 sin(
√

600 t))

(
−3
1

)
+ (c3 cos(

√
125 t) + c4 sin(

√
125 t))

(
1
6

)
.
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c. [4 points] A solution to this system is shown to the
right. What initial conditions were applied to x1 and
x2 to obtain this solution?

Solution: The initial conditions were x1(0) = 0.1, and
x′1(0) = x2(0) = x′2(0) = 0. We see that x1 starts at
0.1, x2 at 0, and that each solution curve starts at 0
with zero slope.
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6. [15 points] Consider a mass-spring system modeled by

y′′ + cy′ + ky = f(t),

where c is the damping coefficient associated with the system and k the spring constant. For
each of the following give a short explanation of your answers.

a. [5 points] If f(t) = 3 sin(2t) and the system is at resonance, are c and k positive, negative
or zero? Give specific values for c and k if possible.

Solution: If the system experiences resonance, we know that c = 0. To have resonance
with a forcing that has a frequency 2, we know that the natural frequency of the system,
which is ω =

√
k must be 2, so that k = 4.

b. [5 points] If f(t) = 3 sin(2t) and the system is at resonance, sketch a qualitatively accurate
graph of yp, the particular solution to the problem.

Solution: Because the system is at resonance, we know that y = A t cos(2t) (we may
omit the t sin(2t) term because there are only even derivatives in the problem). Thus the
solution will be something like the following graph.

t

y
p

c. [5 points] If c > 0, k > 0, and f(t) = 3 sin(2t), what can you say (without solving the
differential equation) about the long-term behavior of y?

Solution: If c > 0 the homogeneous solutions will be decaying. Thus the long-term
response will be yp, the particular solution, which will be yp = A cos(2t) + B sin(2t) =√
A2 +B2 cos(2t− α) for some A and B. That is, the long-term response will be purely

sinusoidal with period π.
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7. [14 points] In this problem we consider the system(
x1
x2

)′
=

(
0 t/2

−4t−3 t−1

)(
x1
x2

)
,

with the initial condition

(
x1(1)
x2(1)

)
=

(
a
b

)
(a, b 6= 0).

a. [4 points] Find the Euler’s method approximation for the solution to the system after
one step with a step size h (your answer will involve a, b and h). What is the meaning of
your result?

Solution: After one step we have

x ≈
(
a
b

)
+ h

(
0 1

2
−4 1

)(
a
b

)
=

(
a+ 1

2hb
b+ h(−4a+ b)

)
.

This is the approximation for x at t = 1 + h.

b. [4 points] Rewrite your approximation in the form P

(
a
b

)
. What is P?

Solution: The matrix P is the coefficient matrix from the approximation,

P =

(
1 1

2h
−4h (1 + h)

)
.

c. [2 points] Find det(P).

Solution: det(P) = 1 + h+ 2h2.

d. [4 points] Is it possible that the Euler step could end at x1 = 0, x2 = 0? Explain.

Solution: Note that det(P) = 2h2 + h + 1 6= 0. Therefore P is nonsingular (has an

inverse), and the only way that this approximation, P

(
a
b

)
, could equal the zero vector

is if a = b = 0. Because we know that a, b 6= 0, this is therefore not possible.
We could also work this out directly: we have the approximations x1(1 + h) = a + 1

2hb
and x2(1 +h) = −4ah+ (1 +h)b. Setting both to zero requires that a+ 1

2hb = 0, so that
a = −1

2hb, and then that −4ah + (1 + h)b = 2h2b + (1 + h)b = (2h2 + h + 1)b = 0. We
know b 6= 0, and 2h2 + h+ 1 6= 0, so this is not possible. Note that this condition is, not
surprisingly, the same as the determinant.


