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1. [14 points] Find real-valued solutions for each of the following, as indicated. (Note that
minimal partial credit will be given on this problem.)

a. [7 points] Solve 1
3 y
′′ + 2y′ + 3y = 2t, y(0) = 0, y′(0) = 4

3 .

Solution: The algebra may be easier if we first multiply by 3, obtaining y′′+6y′+9y = 6t.
The characteristic equation for this is λ2 + 6λ+ 9 = (λ+ 3)2 = 0, so λ = −3 twice, and
the homogeneous solution is yc = c1e

−3t + c2te
−3t. To find yp we use the method of

undetermined coefficients, guessing yp = At+B. Then, plugging in,

6A+ 9At+ 9B = 6t,

so that A = 2
3 and B = −4

9 . The general solution is

y = c1e
−3t + c2te

−3t +
2

3
t− 4

9
.

Applying the initial conditions, we have y(0) = c1 − 4
9 = 0, so c1 = 4

9 , and y′(0) =
−3c1 + c2 + 2

3 = c2 − 2
3 = 4

3 , so that c2 = 2. Thus

y =
4

9
e−3t + 2te−3t +

2

3
t− 4

9
.

b. [7 points] Find the general solution to y′′ + 2y′ + 5y = 2te−t.

Solution: The general solution will be y = yc + yp, where yc solves the complementary
homogenous problem and yp is a particular solutions. For yc we guess y = eλt, so that
λ2 + 2λ+ 5 = (λ+ 1)2 + 4 = 0, and λ = −1± 2i. Thus yc = c1e

−t cos(2t) + c2e
−t sin(2t).

For yp we use the method of undetermined coefficients, taking yp = (At+B)e−t. Plugging
in, we have

(At− 2A+B)e−t + 2(−At+A−B)e−t + 5(At+B)e−t = 3te−t.

Collecting terms in e−t and te−t, we have 4B = 0 and 4A = 2. Thus B = 0 and A = 1
2 ,

and

y = c1e
−t cos(2t) + c2e

−t sin(2t) +
1

2
te−t.
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2. [14 points] Find each of the following, providing an explicit formula where appropriate. (Note
that minimal partial credit will be given on this problem.)

a. [5 points] Y (s) = L{y(t)} if y′′ + 4y′ + 20y = 3 sin(2t), y(0) = 1, y′(0) = 2.

Solution: Transforming both sides of the equation, we have

s2Y − s− 2 + 4(sY − 1) + 20Y =
6

s2 + 4
,

so that

Y =
s+ 6

s2 + 4s+ 20
+

6

(s2 + 4)(s2 + 4s+ 20)
.

b. [5 points] L−1{ s
s2+4s+5

}

Solution: This is

L−1{ s

s2 + 4s+ 5
} = L−1{ (s+ 2)− 2

(s+ 2)2 + 1
}

= L−1{ s+ 2

(s+ 2)2 + 1
} − L−1{ 2

(s+ 2)2 + 1
}

= e−2t cos(t)− 2e−2t sin(t).

c. [4 points] Using the integral definition of the Laplace transform, derive the transform rule
L{uc(t)f(t − c)} = e−scF (s) for a function f(t) with transform L{f(t)} = F (s). (Recall

uc(t) is the unit step function at t = c, uc(t) =

{
0, 0 < t < c

1, t ≥ c
.)

Solution: The integral definition is L{uc(t)f(t − c)} =
∫∞
0 e−stuc(t)f(t − c) dt. Noting

that uc(t) is zero for t < c, we may rewrite this as an integral with lower bound t = c.
With the substitution w = t− c, we have∫ ∞

0
e−stuc(t)f(t− c) dt =

∫ ∞
c

e−stf(t− c) dt =

∫ ∞
0

e−s(w+c)f(w) dw

= e−cs
∫ ∞
0

e−swf(w) dw = e−csF (s).
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3. [14 points] Use Laplace transforms to solve each of the following.

a. [7 points] y′′ + 4y′ + 4y = 2e−2t, y(0) = 1, y′(0) = 0.

Solution: Taking the Laplace transform of both sides of the equation, we have with
Y = L{y},

s2Y − s+ 4sY − 4 + 4Y =
2

s+ 2
, or Y =

2

(s+ 2)3
+

s+ 4

(s+ 2)2
.

From transforms 3 and C from the table, we see that the first term in Y will invert as
L−1{ 2

(s+2)3
} = t2 e−2t. To do the second, we use partial fractions: s+4

(s+2)2
= A

s+2 + B
(s+2)2

.

Clearing the denominators, we have s+ 4 = A(s+ 2) + B, so that with s = −2 we find
B = 2. Then s = 0 requires that A = 1, so that L−1{ s+4

(s+2)2
} = L−1{ 1

s+2 + 2
(s+2)2

} =

e−2t + 2te−2t. Combining this with the first result, we have

y = L−1{Y } = t2e−2t + e−2t + 2te−2t.

b. [7 points] y′′ + 3y′ =

{
12, 0 ≤ t < 2

0, t ≥ 2
, y(0) = 0, y′(0) = 0.

Solution: We want to transform both sides of the equation; the right-hand side we can
do by using the definition of the transform, or by noting that the differential equation
may be written as y′′+ 3y′ = 12− 12u2(t). Transforming the equation using transform 6
in the table, we have

s2Y + 3sY =
12

s
− 12e−2s

s
, so that Y =

12

s2(s+ 3)
− 12e−2s

s2(s+ 3)
.

To find y we need to invert the transform of 12
s2(s+3)

. We decompose this with partial

fractions: 12
s2(s+3)

= A
s + B

s2
+ C

s+3 . Clearing the denominators, 12 = As(s + 3) + B(s +

3) +Cs2. If s = 0, B = 4; if s = −3, C = 4
3 . Then, if s = −2, 12 = −2A+ 4 + 16

3 , so that
A = −4

3 . Thus L−1{ 12
s2(s+3)

} = L−1{− 4
3s + 4

s2
+ 4

3(s+3)} = −4
3 + 4t + 4

3e
−3t, and, using

this and transform 6 from the table, we have

y = L−1{Y } = −4

3
+ 4t+

4

3
e−3t −

(
−4

3
+ 4(t− 2) +

4

3
e−3(t−2)

)
u2(t).
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4. [14 points] Consider a mass-spring system modeled by

x′′ + 4x′ + αx = 0.

a. [5 points] Suppose that the phase portrait for the system is that shown to the right,
below. For what values of α, if any, will the system have this type of behavior? Explain.
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x 'Solution: The characteristic equation of the equation

is λ2+4λ+α = (λ+2)2+α−4 = 0. The behavior shown
in the phase portrait is that of a critically damped sys-
tem, with a repeated eigenvalue and single eigenvector.
This occurs when α = 4. Thus we conclude that α = 4.

b. [3 points] For what values of α, if any, will the system be underdamped? Critically
damped? Overdamped? Explain how you obtain your answers.

Solution: The work from (a) shows that for α = 4 the system is critically damped. It
is underdamped when it has a complex conjugate pair of roots, which will occur when
α > 4. It is overdamped when α < 4.

c. [6 points] Let α = 6. How will the phase portrait for the system in this case differ from
that given in (a)? Sketch the phase portrait for this case. In a separate graph, sketch
representative solutions x(t) as functions of time for the case α = 4. (Note that you do
not need to solve the problem to do this.)
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x′Solution: From the work above, when α = 6 the sys-

tem will be underdamped. We can also see from the
critically damped case in part (a) that the critical point
(0, 0) will be a sink and that trajectories will spiral in
to the origin in a clockwise direction. This is shown in
the figure to the right. When α = 4 and we have the
phase portrait shown in (a), the solution curves must
converge to zero, with the possibility of crossing the t-
axis (but not repeatedly), as shown in the lower figure.
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5. [15 points] For each of the following, identify the statement as true or false by circling “True”
or “False” as appropriate, and provide a short (one or two sentence) explanation indicating
why that answer is correct.

a. [3 points] For the system x′ = −xy + y2, y′ = x2 − xy, the nonlinear trajectory in the
phase plane with x(0) = −3 and y(0) = 0 lies on a circle centered on the origin.

True False

Solution: The system gives dy
dx = y′

x′ = x(x−y)
−y(x−y) = −x

y . Separating and integrating, we

get y dy = −x dx, so that x2 + y2 = 2c.

b. [3 points] For a linear differential operator L = d2

dt2
+ p(t) ddt + q(t), if y1 and y2 are

different functions satisfying L[y1] = L[y2] = g(t) 6= 0, then, for any constants c1 and c2,
y = c1y1 − c2y2 satisfies L[y] = 0.

True False

Solution: Relying on the linearity of the operator,

L[y] = L[c1y1 − c2y2] = c1L[y1]− c2L[y2] = c1g(t)− c2g(t) = (c1 − c2)g(t),

which is zero only if c1 − c2 = 0.

c. [3 points] The solution to a differential equation my′′+ ky = F (t) modeling the motion y
of an undamped mechanical spring system with a periodic external force F (t) = F0 cos(ωt)
can always be written as y = A cos(ω0t − δ1) + B cos(ωt − δ2), a sum of two oscillatory
terms. (A, B, ω0, δ1 and δ2 are constants.)

True False

Solution: This is only true if the forcing frequence ω is not equal to the natural frequency
of the system, ω0 =

√
k/m. If ω = ω0, we will have a growing solution y = A cos(ω0t−

δ1) +Bt cos(ω0 − δ2).

d. [3 points] If λ2 + pλ + q = 0 is the characteristic equation of a constant-coefficient
linear differential equation L[y] = g(t), then solving for Y (s) = L{y(t)} will result in an
expression involving a product of (s2 + ps+ q)−1 with other terms.

True False

Solution: The characteristic equation tells us that the differential equation is L[y] =
y′′+py′+qy = g(t). The transform of this is s2Y −sy(0)−y′(0)+psY −y(0)+qY = G(s),
and solving for Y will give the indicated result.

e. [3 points] If f(t) 6= 0 has Laplace transform L{f(t)} = F (s) and g(t) =

{
f(t), 0 < t < c

0, t ≥ c
,

then L{g(t)} = (1− e−sc)F (s).

True False

Solution: The easiest way to see this is to look for h(t) = L−1{(1 − e−sc)F (s)} =
f(t)−f(t−c)uc(t). Then, by definition, g(t) = (1−uc(t))f(t), and in general h(t) 6= g(t).
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6. [14 points] In the following, we consider the behavior of solutions to a linear, second-order,
constant-coefficient differential equation with a forcing term.

t

ya. [5 points] Write a differential equation of this type
that could have the three solution curves given to the
right. Explain how you know your answer is correct.

Solution: The constant solution shows that we have
a non-zero equilibrium solution, so the forcing term
is g(t) = k, a constant. Then the two non-constant
solutions show an oscillatory transient with decay-
ing amplitude, so the characteristic equation of the
differential equation must have complex roots with a negative real part. Thus any equa-
tion of the form y′′ + ay′ + by = k, where a > 0 and a2 − 4b < 0 (and, because the
equilibrium is positive, k > 0) will produce the desired result. One such is y′′+y′+y = 1.

b. [6 points] Now suppose that the general solution to the problem is y = (c1+c2t+t ln(t))e−t.
What is the differential equation, including the forcing term? Explain.

Solution: Because the problem is linear we know that the general solution has the
form y = yc + yp, where yc is the solution to the complementary homogeneous problem
and yp is a solution to the problem with forcing. Because it is constant-coefficient and
second-order, the solution yc has terms of the form eλt or teλt (where λ may be zero or
complex), so the homogeneous solution here must be yc = c1e

−t + c2te
−t. This requires

that λ = −1, twice, so the characteristic equation is λ2 + 2λ + 1 = 0, and the linear
differential operator is L[y] = y′′ + 2y′ + y. Then yp = t ln(t)e−t. We can find g(t) by
plugging this into L[y]; to do this, we calculuate y′p = −t ln(t)e−t + (ln(t) + 1)e−t and

y′′p = −(yp)
′ + 1

t e
−t − (ln(t) + 1)e−t. Then

L[yp] = y′′p + 2y′p + yp

= (
1

t
e−t − (ln(t) + 1)e−t) + (−t ln(t)e−t + (ln(t) + 1)e−t) + t ln(t)e−t

= t−1e−t = g(t).

Thus the equation and forcing are y′′ + 2y′ + y = t−1e−t.

c. [3 points] If you were finding, by hand, the general solution given in (b), what method
or methods could you use? In these methods, what form do you guess for the solution?

Solution: Because the problem is linear, we know that we will be finding the solution to
the complementary homogeneous problem and then finding a particular solution. Because
it is constant-coefficient, the former will always be done by finding the solution to the
eigenvalue problem obtained by looking for solutions of the form y = eλt (or, x = veλt

for the equivalent system of two first-order equations). The forcing term (and particular
solution) do not admit use of the method of undertermined coefficients, so we would use
variation of parameters to guess yp = u1(t)e

−t + u2(t)te
−t.
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7. [15 points] In lab 3 we considered a nonlinear system modeling a laser with a slightly varying
gain rate, which we rewrite slightly in this problem as

N ′ = γ(A−N(1 + P ))

P ′ = P (N − 1)

with A = A0 + ε cos(ωt).

a. [5 points] If A is constant, the system has a critical point (N,P ) = (1, A − 1). Let
N = 1 + u, P = A0 − 1 + v, and A = A0 + ε cos(ωt) and find a linear system in u and v
by assuming that u, v and ε are all very small.

Solution: Substituting these values into the system, we have

u′ = γ(A0 + ε cos(ωt)− (1 + u)(A0 + v))

= γ(−A0u− v) + εγ cos(ωt)− γuv
v′ = (A0 − 1 + v)u = (A0 − 1)u+ uv

Discarding the (very, very,) very small terms uv, we have

u′ = γ(−A0u− v) + εγ cos(ωt), v′ = (A0 − 1)u.

b. [5 points] The system you obtained in (a) can be rewritten, for some constants α and β,
as v′′ + αv′ + βv = εβ cos(ωt). Find the steady-state response to this rewritten form.

Solution: The steady-state response is vp. Letting vp = B cos(ωt) + C sin(ωt) and
plugging into the equation, we have

−Bω2 cos(ωt)− Cω2 sin(ωt)

−Bαω sin(ωt) + Cαω cos(ωt) +Bβ cos(ωt) + Cβ sin(ωt) = εβ cos(ωt).

Collecting terms in cos(ωt) and sin(ωt), we have two equations for B and C,

(−ω2 + β)B + αωC = εβ

−αωB + (−ω2 + β)C = 0.

Multiplying the first by αω and the second by −ω2 + β and adding, we find

C =
εβαω

(−ω2 + β)2 + (αω)2
, B =

εβ(−ω2 + β)

(−ω2 + β)2 + (αω)2
,

where the result for B follows by solving the second equation for C in terms of B. Then
the steady-state response is v = B cos(ωt) + C sin(ωt) for these B and C.
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Problem 7, continued.

c. [5 points] Suppose that the steady-state solution that you obtained in (b) was, for some

constant b with |b| < 1, vss = bω
(1−ω2)2+(b ω)2

cos(ωt) + 1−ω2

(1−ω2)2+(b ω)2
sin(ωt). Find the

amplitude of the oscillation and explain why the solution exhibits resonance behavior.

Solution: Note that this is of the form vss = B cos(ωt)+C sin(ωt) = R cos(ωt− δ), with
R =

√
B2 + C2. Thus the amplitude of the response is

R =

√(
bω

(1− ω2)2 + (b ω)2

)2

+

(
1− ω2

(1− ω2)2 + (b ω)2

)2

=

√
(1− ω)2 + (bω)2

((1− ω2)2 + (b ω)2)2
=

1√
(1− ω2)2 + (b ω)2

.

We expect this to be a function similar to that shown below

(This can be deduced from the form of R as well: if ω = 0, R = 1; if ω = 1, R = 1/|b| > 1,
and as ω → ∞, R → 0.) Thus, for some intermediate value of ω (a bit less than one)
there is a maximum response amplitude, which is what we mean by resonance.
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Formulas, Possibly Useful

• Some Taylor series, taken about x = 0: ex =
∞∑
n=0

xn

n! ; cos(x) =
∞∑
n=0

(−1)n x2n

(2n)! ; sin(x) =

∞∑
n=0

(−1)n x2n+1

(2n+1)! . The series for ln(x), taken about x = 1: ln(x) =
∞∑
n=1

(−1)n+1 (x−1)n
n .

• Some integration formulas:
∫
u v′ dt = u v−

∫
u′ v dt; thus

∫
t et dt = t et−et+C,

∫
t cos(t) dt =

t sin(t) + cos(t) + C, and
∫
t sin(t) dt = −t cos(t) + sin(t) + C.

Some Laplace Transforms

f(t) F (s)

1. 1
1

s
, s > 0

2. eat
1

s− a
, s > a

3. tn
n!

sn+1

4. sin(at)
a

s2 + a2

5. cos(at)
s

s2 + a2

6. uc(t)
e−cs

s

7. δ(t− c) e−cs

A. f ′(t) s F (s)− f(0)

A.1 f ′′(t) s2F (s)− s f(0)− f ′(0)

A.2 f (n)(t) snF (s)− · · · − f (n−1)(0)

B. tnf(t) (−1)nF (n)(s)

C. ec tf(t) F (s− c)

D. uc(t) f(t− c) e−cs F (s)

E. f(t) (periodic with period T )
1

1− e−Ts

∫ T

0
e−stf(t) dt


