
Math 216 — Final Exam
24 April, 2017

This sample exam is provided to serve as one component of your studying for this exam in
this course. Please note that it is not guaranteed to cover the material that will
appear on your exam, nor to be of the same length or difficulty. In particular,
the sections in the text that were covered on this exam may be slightly different from those
covered by your exam.

This material is (c)2016, University of Michigan Department of Mathematics, and released under
a Creative Commons By-NC-SA 4.0 International License. It is explicitly not for distribution on
websites that share course materials.
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1. [12 points] Find real-valued solutions to each of the following, as indicated. (Note that minimal
partial credit will be given on this problem.)

a. [6 points] Find the solution to y′ + sin(t)y = 3 sin(t), y(0) = 2.

Solution: We can solve this with either an integrating factor or by separating variables.
An integrating factor is µ = exp(

∫
sin(t) dt) = exp(− cos(t)). Multiplying the equation

by µ, we have (ye− cos(t))′ = 3 sin(t)e− cos(t). We integrate both sides to get ye− cos(t) =
3e− cos(t) +C, so that y = 3 +Cecos(t). The initial condition gives y(0) = 3 +Ce1 = 2, so
C = −e−1, and the solution is

y = 3− e−1+cos(t).

Alternately, separating variables, we have y′ = (3− y) sin(t), so that y′/(3− y) = sin(t).
Integrating both sides, − ln |3 − y| = − cos(t) + C ′, so that 3 − y = C̃ecos(t), and y =
3 +Cecos(t), as before. Note that in this case we could also apply the initial condition to
find C ′: 0 = −1+C ′, so that C ′ = 1, and a(n implicit) solution is − ln |3−y| = 1−cos(t),
or

ln |3− y| = cos(t)− 1.

b. [6 points] The general solution to y′′ + 3y′ − 4y = 2− et.

Solution: The general solution will be y = yc+yp, where yc and yp are the complementary
homogeneous and particular solutions. We look for yc = eλt, so that λ2 + 3λ − 4 =
(λ+ 4)(λ− 1) = 0, and λ = −4 or λ = 1. Thus yc = c1e

−4t + c2e
t.

To find yp, we guess yp = A+Btet, multiplying the guess for the et portion of the forcing
by t because this appears in the homogeneous solution. Noting that (tet)′ = et + tet and
(tet)′′ = 2et+ tet, we have after plugging in, A = −1

2 and B(2et+ tet+3et+3tet−4tet) =
B(5et) = −et. Thus B = −1

5 , and our general solution is

y = c1e
−4t + c2e

t − 1

2
− 1

5
tet.

We could use variation of parameters, but it’s not the easiest choice here. We guess
yp = u1e

−4t + u2e
t, so that u′1e

−4t + u′2e
t = 0 and −4u′1e

−4t + u′2e
t = 2− et. Combining

these, −5u′1e
−4t = 2 − et, so u′1 = −2

5e
4t + 1

5e
5t and u1 = − 1

10e
4t + 1

25e
5t. Then u′2 =

−u′1e−5t = 2
5e
−t − 1

5 , so u2 = −2
5e
−t − 1

5 t. Thus

yp = − 1

10
+

1

25
et − 2

5
− 1

5
tet = −1

2
− 1

5
tet +

1

25
et,

and the last term will combine with the homogeneous solution.
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2. [12 points] Find real-valued solutions to each of the following, as indicated. (Note that minimal
partial credit will be given on this problem.)

a. [6 points] Find the general solution to x′ =

(
−1 3
2 −2

)
x +

(
2
0

)
.

Solution: We look for x = xc + xp. The complementary homogeneous solution will be
xc = veλt, where λ and v are the eigenvalues and eigenvectors of the coefficient matrix.

The eigenvalues satisfy det(

(
−1− λ 3

2 −2− λ

)
) = (λ+ 1)(λ+ 2)− 6 = λ2 + 3λ− 4 = 0.

Thus, by factoring, the quadratic formula, or the work from problem (1b), λ = −4 and
λ = 1. If λ = −4, the components of v satisfy 3(v1 + v2) = 2(v1 + v2) = 0, so that

v−4 =

(
1
−1

)
. If λ = 1, −2v1 + 3v2 = 0, so v1 =

(
3
2

)
. Thus xc = c1v−4e

−4t + c2v1e
t.

To find xp, guess xp = a, a constant. Then −a1 + 3a2 + 2 = 0 and 2a1 − 2a2 = 0. From
the second, a1 = a2, and the first requires a2 = a1 = −1. Combining this with xc, we
have

x = c1

(
1
−1

)
e−4t + c2

(
3
2

)
et −

(
1
1

)
.

b. [6 points] Find the solution to y′′ + 2y′ = δ(t− 1), y(0) = 0, y′(0) = 3.

Solution: Because of the impulse forcing we use Laplace transforms. Transforming both
sides, we have, with Y = L{y},

L{y′′ + 2y′} = s2Y − 3 + 2sY = L{δ(t− 1)} = e−s.

Thus Y = 3
s(s+2) + e−s

s(s+2) . To invert, note that 1
s(s+2) = A

s + B
s+2 if 1 = A(s + 2) + Bs.

With s = 0, A = 1
2 , and with s = −2, B = −1

2 . Thus we may calculate the inverse
transform as

y = L−1{ 3

s(s+ 2)
+

e−s

s(s+ 2)
}

= L−1{1

2
(3 + e−s)

(
1

s
− 1

s+ 2

)
=

3

2
(1− e−2t) +

1

2
(1− e−2(t−1))u1(t).
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3. [12 points] Consider a skydiver who jumps from a plane at time t = 0. She falls, affected by
gravity and air resistance, until at a time t = td she deploys her parachute, changing the force
of air resistance. Let v be her downward velocity and g be the acceleration due to gravity
(9.81 m/s in metric units, 32.2 ft/sec2 in English).

a. [4 points] Explain why a reasonable model for v is v′ = g −

{
k1v, t < td

k2v, t ≥ td
, v(0) = 0.

(Here, k1 and k2 are different constants, with k2 >> k1.)

Solution: We are applying Newton’s law, mass · acceleration =
∑

(applied forces). Here
mass · acceleration = mv′, and the applied forces are the force of gravity (mg) and air
resistance. Assuming that the air resistance is proportional to the skydiver’s velocity, it
will be −αv, with the negative sign indicating that it works in the direction opposite to
her velocity. Thus the sum of the forces will be mg − αv. When the parachute deploys
the constant α will change from one value α1 to a larger value α2. Dividing both sides
by m and letting k1,2 = α1,2/m, we have the given model. The initial condition v(0) = 0
indicates that the skydiver has no initial downward velocity.

b. [4 points] Rewrite this model as a single equation involving a step function.

Solution: We have

v′ = 10− 0.01v(1− u10(t))− v u10(t) = 10− 0.01v − 9.99 v u10(t),

still with v(0) = 0.

c. [4 points] Explain where you would run into difficulty if you tried to use Laplace transforms
to solve your equation from (b).

Solution: Let V = L{v}. Then, taking the Laplace transform of both sides of the
equation, we have

s2V =
10

s
− 0.01V − 9.99L{v(t)u10(t)}.

The difficulty is in calculating L{v(t)u10(t)}: transform (D) from the table gives L{v(t−
10)u10(t)}, but that is not what we have here. If we attempt to find the transform
directly, we have

L{v(t)u10(t)} =

∫ ∞
0

v(t)u10(t) e
−st dt =

∫ ∞
10

v(t)e−st dt,

but we have no easy way to relate this to the transform of V :
∫∞
10 v(t)e−st dt =

∫∞
0 v(t+

10)e−10se−st dt = e−10s
∫∞
0 v(t+ 10)e−st dt, which is still not tractable.
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(i)

(ii)

(iii)

(iv)

4. [12 points] Consider the solutions of x′ = Ax for each of the following matrices A. Assuming
also that each of k1, k2 and k3 are positive constants, match each of the following matrices to
one of the phase portraits given to the right. Explain how you are able to make this matching.

a. [4 points] A =

(
0 1

−(k1 + 1) −2

)
Solution: For this matrix we see that eigenvalues are
given by the characteristic equation −λ(−2−λ)+k1+1 =
λ2 + 2λ+k1 + 1 = (λ+ 1)2 +k1 = 0. Thus λ = −1± i

√
k1,

and, because k1 > 0 we know that the eigenvalues are
complex, with negative real part. The phase portrait must
therefore show an inward spiral, which is the case in phase
portrait (iii).

b. [4 points] A =

(
k2 + 1 1

0 1

)
Solution: For this matrix the characteristic equation is
((k2 + 1)− λ)(1− λ) = 0, so that the eigenvalues are λ =
k2 + 1 and λ = 1, two distinct positive values. The result
will be a node with outward (and two distinct straight-
line) trajectories, which is shown in phase portrait (iv).

c. [4 points] A =

(
0 1
1 2k3

)
Solution: Finally, for this matrix, we have −λ(2k3 −
λ) − 1 = λ2 − 2k3λ − 1 = (λ − k3)2 − 1 − k23 = 0. Thus
λ = k3 ±

√
1 + k23, and, with k3 > 0, we will have one

positive and one negative real eigenvalue. This will give a
saddle point, which is shown in phase portrait (i).
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5. [12 points] Consider a mass-spring system in which the displacement of the mass is modeled
by the initial value problem

y′′ + 2ky′ + 4y = 5 cos(ωt), y(0) = y′(0) = 0.

a. [6 points] Suppose that the damping is very small, so that we may assume that k = 0.
Assuming that ω 6= 2, find the displacement y of the mass, in the form y = R cos(ωt −
δ) + C cos(ω0t− δ0).

Solution: The homogeneous solution is y = c1 cos(2t)+c2 sin(2t). To find the particular
solution we guess yp = A cos(ωt) +B sin(ωt). Plugging in, we have

−ω2(A cos(ωt) +B sin(ωt)) + 4(A cos(ωt) +B sin(ωt)) = 5 cos(ωt),

so that B = 0 and A = 5/(4 − ω2). The general solution is therefore y = c1 cos(2t) +
c2 sin(2t) + 5

4−ω2 cos(ωt). The initial conditions require that c1 = − 5
4−ω2 and c2 = 0, so

our solution is in the desired form,

y =
5

4− ω2
cos(ωt)− 5

4− ω2
cos(2t),

with R = −C = 5
4−ω2 and δ = δ0 = 0.

b. [6 points] Next consider the four cases (1) k = 0, ω = 1.9; (2) k = 0, ω = 2; (3) k = 0.1,
ω = 2; and (4) k = 0.1, ω = 10. Sketch qualitatively accurate graphs of the displacements
y as functions of time t for each of these cases, giving some sense of the relative magnitude
of the solutions. Briefly explain why you sketch the graphs you do. (Note that you do not
need to solve the problem again to answer this question.)

Solution: The first two cases are undamped; as demonstrated by the undefined magni-
tude R in (a) for ω = 2, we can get pure resonance in this case, in which the magnitude of
the solution grows (linearly). When ω = 1.9, near this resonant frequency, we expect to
see beats, an oscillatory solution with a slowly modulated large amplitude. When k > 0
all solutions are bounded, the homogeneous component of the solution dies away expo-
nentially, and as ω gets very large we expect the amplitude of the steady state solution
to get small. Thus we expect to see the graphs shown below.

k=0, ω=1.9
k=0, ω=2

k=0.1, ω=2

-20

-10

10

20
k=0.1, ω=10

-0.10

-0.05

0.05

0.10
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6. [10 points] If we make a small typographical error when writing out the Lorenz system that
we studied in lab 5, we obtain the system

x′ = σ(−x+ y)

y′ = ry − x− xz
z′ = −bz + xy

a. [5 points] As with the Lorenz system, one critical point of this system is (0, 0, 0). Find a
linear system that approximates the system near (0, 0, 0).

Solution: We know that this will be x′ = J(0, 0, 0)x, where J is the Jacobian. This is

J0 =


∂
∂xσ(−x+ y) ∂

∂yσ(−x+ y) ∂
∂zσ(−x+ y)

∂
∂x(ry − x− xz) ∂

∂y (ry − x− xz) ∂
∂z (ry − x− xz)

∂
∂x(−bz + xy) ∂

∂y (−bz + xy) ∂
∂z (−bz + xy)

∣∣∣∣
(0,0,0)

=

 −σ σ 0
−1− z r −x
y x −b

∣∣∣∣
(0,0,0)

=

−σ σ 0
−1 r 0
0 0 −b

 .

And our system is, with x =
(
x y z

)T
, x′ = J0 x.

Alternately, because we are linearizing at (0, 0, 0) and all terms are polynomial, we
can just drop the nonlinear terms from the system, obtaining the same result.

b. [5 points] If b = 5, σ = 1, and r = 1/4, the eigenvalues and eigenvectors of the coefficient
matrix of the linearized system you found in (a) are approximately λ1 = −5 and λ2,3 =

−3
8 ±

7
9 i, with v1 =

0
0
1

, and v2,3 =

5
8 ±

6
7 i

1
0

. Describe phase space trajectories in

this case. If we start with an initial condition (x, y, z) = (0.5, 0.5, 0), sketch the trajectory
in the phase space.

Solution: We note that the first eigenvalue is a much larger (in magnitude) negative
real value than the real part of the other two; thus, we expect that to decay much faster

than the other. Because this is associated with the eigenvector v1 =
(
0 0 1

)T
, this

means that the trajectories will rapidly decay into the xy-plane. Once there, they will be

spiral trajectories. We note that the linearized system gives

(
x
y

)′
=

(
−1 1
−1 1/4

)(
x
y

)
,

so starting from (x, y) = (1, 1), (x′, y′) = (0,−3/4) and the trajectory must be moving
clockwise. Thus we have a clockwise spiral in the xy-plane, shown below.
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7. [15 points] Consider a mass-spring system with a nonlinear “soft” spring, for which the dis-
placement x of a mass attached to the spring is modeled by

x′′ + 2γ0x
′ + k(x− x2) = 0.

a. [4 points] Rewrite this as a system in x =

(
x
y

)
=

(
x
x′

)
.

Solution: We have (
x
y

)′
=

(
y

k(x2 − x)− 2γ0y

)
.

b. [5 points] Find all critical points for your system from (a).

Solution: To find critical points we require that x′ = y′ = 0. Thus y = 0, and x2−x = 0,
so x = 0 or x = 1. The two critical points are (0, 0) and (1, 0).
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Problem 7, continued.
We are solving

x′′ + 2γ0x
′ + k(x− x2) = 0.

You may want to write your system from (a) here:(
x
y

)′
=

(
y

k(x2 − x)− 2γ0y

)
.

c. [6 points] Let γ0 = 4 and k = 18. Sketch the phase plane for the system in this case
by linearizing about all critical points and determining local behavior. Using your sketch,
what do you expect to happen to a solution that starts with the initial condition x(0) = 0.8,
x′(0) = y(0) = 0.2? (Note: for this part of the problem you should assume that the original
equation is in fact well-defined for x < 0.)

Solution: The Jacobian of the system is J =

(
0 1

18(2x− 1) −8

)
. At (0, 0), we have

J0 =

(
0 1
−18 −8

)
. Eigenvalues of J0 satisfy λ2 + 8λ + 18 = 0, or (λ + 4)2 + 2 = 0, so

λ = −4± i
√

2. At (1, 0),

(
x
y

)′
= J0

(
1
0

)
=

(
0
−18

)
. This is downward, so near (0, 0) we

must have a clockwise spiral sink.

At (1, 0), the Jacobian is J1 =

(
0 1
18 −8

)
. Eigenvalues satisfy λ2 + 8λ − 18 =

(λ+4)2−34 = 0, so λ = −4±
√

34. Note that
√

34 ≈
√

36 = 6, so these are approximately
λ1,2 = −10, 2. Then eigenvectors satisfy (4 ∓

√
34)v1 + v2 = 0, so the eigenvectors are

v1,2 =

(
1

−4±
√

34

)
≈
(

1
−10

)
,

(
1
2

)
. This is a(n unstable) saddle point. Sketching

these in the phase plane, we obtain the graph shown below.
Then, if we start at (0.8, 0.2), we are to the left of the critical point (1, 0) and below

the attracting eigenline. We therefore expect the trajectory to move out and down toward
(1, 0), crossing the x-axis to the left of (1, 0) and then spiraling in to (0, 0). The phase
portrait is shown below, with the trajectory starting at (0.8, 0.2) shown with an initial
dot and thicker lines. The dashed curves are nonlinear trajectories.

-0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

1.0
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8. [15 points] For each of the following, identify the statement as true or false by circling “True”
or “False” as appropriate, and provide a short (one or two sentence) explanation indicating
why that answer is correct.

a. [3 points] Two linearly independent solutions of x′′+ 6x′+ 9x = 0 are x1 = e−3t and x2 =

te−3t. Thus two linearly independent solutions of x′ =

(
0 1
−9 −6

)
x are x1 =

(
1
−3

)
e−3t

and x2 =

(
1
−3

)
te−3t.

True False

Solution: There are a number of ways to see that this is false: first is that x2 isn’t a

solution to the system (x′2 =

(
−3t+ 1
9t− 3

)
e−3t, while the right hand side is

(
−3t
9t

)
e−3t.)

In addition, x1 and x2 aren’t linearly independent (W (x1,x2) = 0).

b. [3 points] If A is a real-valued 5×5 matrix with 5 distinct eigenvalues, not necessarily real,
and if the real parts of all of the eigenvalues are negative, then x = 0 is an asymptotically
stable critical point of x′ = Ax.

True False

Solution: All terms in the general solution to x′ = Ax will be multiplied by a factor of
eRe(λj)t (1 ≤ j ≤ 5), with the only other functional dependence being cos(ωt), sin(ωt) or
powers of t. Thus the solutions all decay to zero, and the critical point is stable.

c. [3 points] If the nonlinear system x′ = f(x) has an unstable isolated critical point x = x0,
then any solution to the system will eventually get infinitely far from x0.

True False

Solution: There are lots of counterexamples. A saddle point has a line of solutions that
approach the critical point asymptotically. Another example is the van der Pol system:
for certain parameter values x = 0 is an unstable critical point, but all solutions are
attracted to a limit cycle which does not allow trajectories to escape to infinity.

d. [3 points] Suppose that the nonlinear system x′ = F (x, y), y′ = G(x, y) has an isolated
critical point (x, y) = (1, 2). If we are able to linearize the system at this critical point
and the eigenvalues of the resulting coefficient matrix are real-valued and non-zero, we
can deduce the stability of the critical point from the linearization.

True False

Solution: This is the substance of our theorem about the linear analysis of almost
linear systems; if the eigenvalues are real and non-zero, small changes will not change
our conclusion as to the stability of the point. If the eigenvalues are equal we may not
be able to determine if the point is a node or a spiral point, but its stability will remain
the same.

e. [3 points] L−1{ e−2ss
(s+1)2+4

} = e−(t−2) cos(2(t− 2))u2(t)

True False

Solution: To use the rule for F (s− c), all terms with s must first be rewritten as s− c:
L−1{ e−2ss

(s+1)2+4
} = L−1{ e

−2s((s+1)−1)
(s+1)2+4

} = e−(t−2)(cos(2(t− 2))− 1
2 sin(2(t− 2)))u2(t).


