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This sample exam is provided to serve as one component of your studying for this exam in
this course. Please note that it is not guaranteed to cover the material that will
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covered by your exam.
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1. [15 points] Find explicit, real-valued solutions to each of the following, as indicated. For this
problem, use Laplace transforms, not some other solution technique.

a. [8 points] y′′ + 2y′ + y = e−t, y(0) = 0, y′(0) = 1.

Solution: Applying the forward transform, letting Y = L{y}, we have (s2+2s+1)Y −1 =
1
s+1 , so that

Y =
1

(s+ 1)2
+

1

(s+ 1)3
.

Note that, using rules (2) and (B) from the table, we have L−1{ 1
(s+1)2

} = L−1{− d
ds

1
(s+1)} =

te−t, and L−1{ 1
(s+1)3

} = L−1{−1
2
d
ds

1
(s+1)2

} = 1
2 t

2e−t. Thus,

y = L−1{ 1

(s+ 1)2
}+ L−1{ 1

(s+ 1)3
}

= te−t +
1

2
t2e−t.

b. [7 points] y′′ + 6y′ + 13y = 0, y(0) = 1, y′(0) = 0.

Solution: Applying the forward transform, letting Y = L{y}, we have (s2 +6s+13)Y −
s− 6 = 0, so that

Y =
s+ 3

(s+ 3)2 + 4
+

3

(s+ 3)2 + 4
.

We can invert both of these with rules (4), (5), and (C). We have

y = L−1{Y } = L−1
{

s+ 3

(s+ 3)2 + 4
+

3

(s+ 3)2 + 4

}
= e−3t cos(2t) +

3

2
e−3t sin(2t).
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2. [14 points] Fill in the missing portions of each of the following transforms. Briefly explain
how you obtain your work.

a. [7 points] L{


0, 0 ≤ t < 1

1, 1 ≤ t < 5

e−(t−5), t ≥ 5

} = 1
s (e−s − e−5s)+ e−5s 1

s+1

Solution: Letting f be the indicated funcion and breaking the integral on the piecewise
definitions, we have

L{f} =

∫ 5

1
e−st dt+

∫ ∞
5

e−(t−5)e−st dt.

The first of these integrals gives the terms provided. The second is∫ ∞
5

e5e−(s+1)t dt = lim
b→∞

(− e5

s+ 1
)e−(s+1)t

∣∣∣∣t=b
t=5

=
e5

s+ 1
e−5s−5 =

e−5s

s+ 1
.

b. [7 points] L−1{ 1

s(s+ 1)(s2 + 1)
} = 1− 1

2
cos(t)+ −1

2 sin(t)− 1
2e
−t

Solution: We can rewrite this with partial fractions:

1

s(s+ 1)(s2 + 1)
=
A

s
+

B

s+ 1
+
Cs+D

s2 + 1
.

The inverse transforms of these will be, in order, A, Be−t, C cos(t), and D sin(t). Thus
from the provided partial answer we know that A = 1 and C = −1

2 . Then, clearing the
denominators and using these values, we have

1 = (s+ 1)(s2 + 1) +Bs(s2 + 1) + (−1

2
s+D)s(s+ 1).

If s = −1, we have 1 = −2B, so that B = −1
2 . If s = 1, we have 1 = 4−1+(−1

2 +D)(2) =
2 + 2D. Thus D = −1

2 , and we have the indicated result.
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3. [14 points] Find each of the following, as indicated.

a. [7 points] If a function f(t) has the Laplace transform F (s) = L{f(t)}, use the integral
definition of the Laplace transform to find the transform L{

∫ t
0 f(x) dx} in terms of F (s).

(You may assume that
∫∞
0 f(x) dx = L, a finite value.)

Solution: We have, integrating by parts with u =
∫ t
0 f(x) dx (so that u′ = f(t)) and

v′ = e−st (so that v = −1
se
−st),

L{
∫ T

0
f(t) dt} =

∫ ∞
0

(

∫ t

0
f(x) dx) e−st dt

= −1

s
lim
b→∞

(

∫ t

0
f(x) dx) e−st

∣∣∣∣t=b
t=0

+
1

s

∫ ∞
0

f(t)e−st dt

= −1

s

∫ 0

0
f(x) dx+ lim

b→∞

1

s
L e−sb +

1

s
F (s).

The first term on the right-hand side is an integral over an interval of zero length, and
so is zero, and in the limit as b→∞, the second vanishes because of the negative expo-
nential e−sb. Thus we have L{

∫ t
0 f(x) dx} = 1

s F (s).

b. [7 points] Find an explicit expression for Y = L{y} if y′′′ + 3y = t2e−4t − e−2t cos(5t).
(Note that you are not asked to solve the differential equation.)

Solution: Because of the linearity of the transform, we can calculate the transform of
each term separately. We have L{y′′′} = s3Y −s2y(0)−sy′(0)−y′′(0) and L{3y} = 3Y . To

find L{t2e−4t}, we note that L{e−4t} = 1
s+4 , so that, by rule (B), L{t2e−4t} = d2

ds2
1
s+4 =

2
(s+4)3

. To find L{e−2t cos(5t)}, we use rule (C) and the transform L{cos(5t)} = s
s2+25

to

get L{e−2t cos(5t)} = s+2
(s+2)2+25

. Putting these all together and solving for Y , we have

Y =
s2y(0) + sy′(0) + y′′(0)

s3 + 3
+

2

(s+ 4)3(s3 + 3)
− s+ 2

((s+ 2)2 + 25)(s3 + 3)
.
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4. [15 points] Find explicit, real-valued solutions for each of the following, as indicated. Do not
use Laplace transform techniques on this problem.

a. [8 points] Find the general solution to y′′ + 2y′ + 4y = e−t + t2.

Solution: We first look for the general solution in the form y = yc + yp. For yc,
the guess y = ert gives r2 + 2r + 4 = (r + 1)2 + 3 = 0, so that r = −1 ±

√
3 i, and

yc = c1e
−t cos(

√
3t) + c2e

−t sin(
√

3t).
To find yp, we use the method of undetermined coefficients, looking for each of the

forms on the right-hand side separately. For the e−t term, we guess y = ae−t, so that
(1 − 2 + 4)a = 1, and a = 1

3 . For the t2 term, we guess y = a0 + a1t + a2t
2, so that

2a2 + 2(2a2t + a1) + 4(a2t
2 + a1t + a0) = t2. Collecting powers of t, we have a2 = 1

4 ,
a1 = −1

4 , and a0 = 0.
The general solution to the problem is therefore

y = c1e
−t cos(

√
3t) + c2e

−t sin(
√

3t) +
1

3
e−t +

1

4
t2 − 1

4
t.

b. [7 points] Solve y′′ + 5y′ + 4y = 3 cos(2t), y(0) = 0, y′(0) = 1

Solution: We look for the general solution as y = yc + yp. For yc we have y = ert, and
r2 + 5r + 4 = (r + 4)(r + 1) = 0, so that yc = c1e

−4t + c2e
−t.

For yp we use the method of undetermined coefficients guess yp = a cos(2t)+b sin(2t).
Plugging in, we have

−4a cos(2t)− 4b sin(2t)− 10a sin(2t) + 10b cos(2t) + 4a cos(2t) + 4b sin(2t) = 3 cos(2t).

Collecting terms in cos(2t) and sin(2t), we have 10b = 3, and −10a = 0; thus a = 0 and
b = 3

10 . Our general solution is therefore

y = c1e
−4t + c2e

−t +
3

10
sin(2t).

Applying the initial conditions, we have y(0) = c1+c2 = 0, and y′(0) = −4c1−c2+ 3
5 = 1.

Substituting the first into the second, we have 3c2 = 2
5 , so that c2 = 2

15 and c1 = − 2
15 .

Thus

y = − 2

15
e−4t +

2

15
e−t +

3

10
sin(2t).
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5. [14 points] Consider the operators T [y] = yy′′ + 2y2y′ and U [y] = t2y′′ − ty′ − 3y.

a. [9 points] Show that T is nonlinear while U is linear.

Solution: We note that

T [cy] = cy(cy′′)− 2c2y2(cy′) = c2(yy′′ − 2cy2y′) 6= cT [y]

(because cT [y] = c(yy′′ + 2y2y′)). Therefore T is not linear. (Other possible arguments
include the calculations T [y1 + y2] 6= T [y1 + y2], and T [c1y1 + c2y2] 6= c1T [y1] + c2T [y2].)
However,

U [c1y1 + c2y2] = t2(c1y
′′
1 + c2y

′′
2)− t(c1y′1 + c2y

′
2)− 3(c1y1 + c2y2)

= c1(t
2y′′1 − ty′1 − 3y1) + c2(t

2y′′2 − ty′s − 3y2)

= c1U [y1] + c2U [y2].

Thus U is linear.
Alternately, we said that a linear operator may also be written in the form L = D2 +
p(t)D + q(t), so that L[y] = D2[y] + p(t)D[y] + q(t)y. For T , we have

T [y] = yy′′ + 2y2y′ = yD2[y] + 2y2D[y] = y(D2[y] + 2yD[y]),

which is not in the form of a linear operator, while

U [y] = t2(D2[y]− t−1D[y]− 3y) = t2(D2 − t−1D − 3t−2)[y],

so that the operator U = t2D2−tD−3. Note that this isn’t in the form of L; it is an easy
generalization from that, but isn’t quite consistent with our understanding. It’s best to
make the argument above, or to consider the operator in the context of a differential
equation: the equation U [y] = 0 can be written as L[y] = 0, with L = D2− t−1D− 3t−2,
a linear operator.

b. [5 points] Show that y1 = t−1 and y2 = t3 constitute a fundamental set of solutions to
the equation U [y] = 0. What is the general solution to U [y] = 0?
(You may assume that t > 0.)

Solution: A fundamental solution set to a linear second-order homogeneous equation
consists of two linearly independent solutions. Note that U [y1] = t2(2t−3) − t(−t−2) −
3t−1 = 3t−1 − 3t−1 = 0, and U [y2] = t2(6t) − t(3t2) − 3t3 = 6t3 − 6t3 = 0, so y1 and y2
are solutions to U [y] = 0. Then

W [y1, y2] =

∣∣∣∣ t−1 t3

−t−2 3t2

∣∣∣∣ = 3t+ t = 4t 6= 0,

so the solutions are linearly independent. Thus the general solution is y = c1t
−1 + c2t

3.
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y′6. [13 points] Consider the phase portrait shown to the right, which
shows the phase portrait for a linear, second-order, constant coeffi-
cient, homogeneous differential equation L[y] = 0.

a. [7 points] Write a differential equation that could give this phase
portrait. Explain how you obtain your solution, and why is it
correct.

Solution: We note that the phase portrait shows a center,
that is, trajectories are simple closed loops. This suggests that
the solutions are sines and cosines, so that we should have an
equation y′′+ω2

0y = 0. Solutions to this are y1 = cos(ω0t) and
y2 = sin(ω0t), so that the phase plane trajectories are given by

x1 = c1

(
cos(ω0t)
−ω0 sin(ω0t)

)
and x2 = c2

(
sin(ω0t)

ω0 cos(ω0t)

)
. We note

that the vertical stretch of the shown trajectories appears to
be twice that of the horizontal, so guess that ω0 = 2. Our
equation is therefore y′′ + 4y = 0.

b. [6 points] Suppose that we add a forcing term f(t) = cos(15t/8) to the equation, so that
we are solving L[y] = f(t). Sketch an approximate solution curve with y(0) = 0, y′(0) = 1.
Explain why your solution appears as it does.

Solution: Note that the forcing frequency ω = 15/8 is close to the natural frequency
of the system, ω0 = 2. So we expect to see at least a mild beats phenomenon. This is
shown in the graph below.
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7. [15 points] In our lab on lasers, we considered a linearization of the nonlinear model for
the population inversion N and light intensity P . A critical point of the nonlinear system is
(N,P ) = (1, A− 1), and linearizing the system near this gives the linear system

u′ = −γ(Au+ v), v′ = (A− 1)u,

where γ and A are constants.

a. [5 points] Rewrite this as a single, second-order equation in v.

Solution: Note that, from the second equation, u = 1
A−1 v

′. Plugging this into the first
equation, we have

1

A− 1
v′′ +

γA

A− 1
v′ + γv = 0,

or v′′ + γAv′ + γ(A− 1)v = 0.

b. [5 points] Suppose that for some α and β your equation from (a) is v′′ + αv′ + βv = 0.
Under what conditions on α and β will the solution for v be underdamped? Write down
two real-valued linearly independent solutions to the equation in this case.

Solution: We note that solutions to this equation are v = ert with r = −α
2 ±

1
2

√
α2 − 4β.

This will give underdamping if α2−4β < 0, that is, if α2 < 4β. In terms of the constants

we obtained in (a), this is γ2A2 < 4γ(A − 1), or γ < 4A−1A
2
. The two solutions are

y1 = e−µt cos(νt) and y2 = e−µt sin(νt), where µ = α
2 = γA

2 and ν = 1
2

√
4β − α2 =

1
2

√
4γ(A− 1)− γ2A2.

c. [5 points] Now suppose that we force the underdamped equation given in (b) with the
periodic forcing term f(t) = cos(ωt). Sketch a graph of the steady state solution of the
problem. Explain why your graph has the form it does. If ω changes from very small to
very large values, how would you expect your sketch to change? Explain.

Solution: The steady state solution will be the response to the forcing, because (as we
see in (b)) the non-forced response decays to zero. Because y1 and y2 do not have the
same form as f(t), we know that the steady state (particular) solution will have the form
vp = a cos(ωt) + b sin(ωt) = R cos(ωt− φ), so it will be a simple sinusoid:

5 10 15 20
t

-1.0

-0.5

0.5

1.0

v

If we vary ω, we expect that the frequency of the solution will change, and that its am-
plitude will also change. A reasonable guess is that the amplitude will initially increase,
obtain a local maximum at an ω near ν = 1

2

√
4β − α2 = 1

2

√
4γ(A− 1)− γ2A2, and then

decay to zero as ω becomes very large.


