
Math 216 — Final Exam
19 April, 2018

This sample exam is provided to serve as one component of your studying for this exam in
this course. Please note that it is not guaranteed to cover the material that will
appear on your exam, nor to be of the same length or difficulty. In particular,
the sections in the text that were covered on this exam may be slightly different from those
covered by your exam.

This material is (c)2018, University of Michigan Department of Mathematics, and released under
a Creative Commons By-NC-SA 4.0 International License. It is explicitly not for distribution on
websites that share course materials.
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1. [15 points] Find explicit, real-valued solutions for each of the following, as indicated.

a. [6 points] Solve for y if y′ + yet − et = 0, y(0) = 0.

Solution: This is both linear and separable. If we proceed with an integrating factor,
we write y′ + (et)y = et, so that µ = e

∫
et dt = ee

t
. Then (yee

t
)′ = etee

t
, and, integrating

both sides, we have yee
t

= ee
t

+ C. Solving for y, y = 1 + Ce−e
t
. The initial condition

requires 0 = 1 + Ce−1, so C = −e, and

y = 1− e1−et .

Alternately, we can separate variables. To do this, we rewrite the equation as y′ =
−et(y−1), so that y′/(y−1) = −et. Integrating both sides we have ln |y−1| = −et+C ′.
Exponentiating both sides and letting C = ±eC′

, we have y − 1 = Ce−e
t
, so that

y = 1− Ce−et , as before. We can then apply the initial condition as before.
We could, of course, also apply the initial condition to the relation ln |y− 1| = −et +C ′.
Then 0 = −1 + C ′ so that C ′ = 1, and the final solution is as we expect, y = 1− e1−et .

b. [9 points] Find the general solution to x′ =

(
3 2
−2 3

)
x.

Solution: We know that solutions will be of the form x = veλt, where λ and v are
the eigenvalues and eigenvectors of the coefficient matrix. Here, eigenvalues satisfy (3−
λ)2 + 4 = 0, so λ = 3 ± 2i. With these values, components of the eigenvector satisfy

∓2iv1 + 2v2 = 0, so v2 = ±iv1, and eigenvectors are v =

(
1
±i

)
. To find a real-

valued solution we use the real and imaginary parts of the exponential solution as our
fundamental solution set, so that

x = c1

(
cos(2t)
− sin(2t)

)
e3t + c2

(
sin(2t)
cos(2t)

)
e3t.
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2. [15 points] Find explicit, real-valued solutions for each of the following, as indicated.

a. [7 points] Find the general solution to y′′′ + 4y′′ + 3y′ = 5− e−2t.

Solution: For the complementary homogeneous solution, we look for y = eλt, so that
λ(λ2 + 4λ+ 3) = λ(λ+ 1)(λ+ 3) = 0. Thus we have λ = 0, λ = −1, and λ = −3, so that
the complementary homogeneous solution is y = c1 + c2e

−t + c3e
−3t. For the particular

solution, noting that a constant is part of the homoegenous solutions, we use the method
of undetermined coefficients and guess yp = yp1 + yp2 = at+ be−2t. For the first part of
this, we have 3a = 5, so a = 5/3. For the second, we have (−8 + 16 − 6)b = −1, and
b = −1/2. The general solution is therefore

y = c1 + c2e
−t + c3e

−3t +
5

3
t− 1

2
e−2t.

b. [8 points] Solve y′′ + 3y′ + 2y = 4u1(t)− 3δ(t− 2), y(0) = 0, y′(0) = 1.

Solution: While it is possible to solve this with other methods, by far the best approach
is to use Laplace transforms. Taking the forward transform of both sides and letting
Y = L{y}, we have s2Y − 1 + 3sY + 2Y = 4

s e
−s − 3e−2s, so that

Y =
1

(s+ 1)(s+ 2)
+

4

s(s+ 1)(s+ 2)
e−s − 3

(s+ 1)(s+ 2)
e−2s.

To invert the first and last term in Y , we rewrite 1
(s+1)(s+2) = A

s+1 + B
s+2 , so that 1 =

A(s + 2) + B(s + 1). Taking s = −1 and s = −2, we have A = 1, B = −1. Similarly,
for the middle term we write 1

s(s+1)(s+2) = C
s + D

s+1 + E
s+2 . Then 1 = C(s+ 1)(s+ 2) +

Ds(s + 2) + Es(s + 1). With s = 0, −1, and −2, we have C = 1
2 , D = −1, and E = 1

2 .
Thus

y = L−1{Y } = L−1{
(

1

s+ 1
− 1

s+ 2

)
(1− 3e−2s) +

(
1

2s
+

1

s+ 1
+

1

2(s+ 2)

)
4e−s}

= (e−t − e−2t)− 3(e−(t−2) − e−2(t−2))u2(t)
+ (2− 4e−(t−1) + 2e−2(t−1))u1(t).
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3. [15 points] Consider the differential equation V ′ = V 1/3(k − V 2/3), where V (t) is some (real-
valued) physical quantity and k is a constant.

a. [5 points] Find all equilibrium solutions of the equation and their stability. How does the
number of equilibrium solutions depend on k?

Solution: Equilibrium solutions are constant solutions, so V ′ = 0 = V 1/3(k − V 2/3).
Thus V = 0 is an equilibrium solution for any value of k, and V = ±k3/2 is an equilibrium
solution if k > 0. So there is one equilibrium solution if k ≤ 0, and three if k > 0.

To analyze stability it is easiest to consider the sign of the right-hand side of the
equation, f(V ) = V 1/3(k−V 2/3). If k ≤ 0, this is a negative number times V 1/3, so that
f(V ) is positive for V < 0 and negative for V > 0, so that V = 0 is an asymptotically
stable equilibrium.

If k > 0 there are three critical points. If V > (k3/2), f(V ) < 0, and f(V ) changes
sign at each critical point. Thus V = ±k3/2 are asymptotically stable, and V = 0 is
unstable.

b. [5 points] Sketch representative solution curves for the equation. Note that you may
need more than one graph if you found in (a) a different number of equilibrium solutions
depending on the values of k. In the long run, what solution(s) to the equation do you
expect to see?

Solution: We have two cases, k ≤ 0 and k > 0. Based on the stability analysis above,
we expect solution curves to look like the graphs below. As t→∞, for k < 0 we expect
to see only the zero solution; for k > 0, we expect to see one of the solutions V = ±k3/2.

k ≤ 0 k > 0

t

V

t

-k3/2

k3/2

V
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Problem 3, continued. We are considering the differential equation V ′ = V 1/3(k−V 2/3), where
V (t) is some (real-valued) physical quantity and k is a constant.

c. [5 points] Are there any initial conditions V (t0) = V0 for which you might expect this
differential equation could have no solution? More than one solution? Explain. (Hint:
you shouldn’t need to solve the equation to answer this question.)

Solution: Note that, with the usual assumptions about the cube root, f(V ) is continuous
for all values of V , and f ′(V ) = 1

3V
−2/3(k − V 2/3) − 2

3 is continuous everywhere but at
V = 0. Thus for all t0 and all V0 6= 0 we are guaranteed a unique solution to the initial
value problem. When V0 = 0, we know there is one solution (V = 0), but it is not clear
if there could be more than one. Thus we know there is no initial condition for which
there are no solutions, and for V0 = 0 we could have multiple solutions if the solution
trajectories we graphs to the left, above, reach the t axis in finite time.

4. [15 points] If the solution to the initial value problem y′′ + 4y′ + ay = 3δ(t − π), y(0) = 0,
y′(0) = k, is for t < π a decaying sinusoid with a local maximum at t = π/2, and is zero for
all values of t ≥ π, what are k and a?
Use Laplace transforms in your solution to this problem.

Solution: Because the forcing term is a delta function we are inclined to use Laplace trans-
forms even in the absence of the strongly worded admonition. The forward transform is, with
Y = L{y}, (s2+4s+a)Y = k+3e−πs, so that Y = k/(s2+4s+a)+3e−πs/(s2+4s+a). Next,
we know that solutions are decaying sinusoids for t < π, so the denominator of this, s2+4s+a,
must not factor over reals. Therefore we can write s2+4s+a = (s+2)2+(a−4), with a−4 > 0,
and see that the inverse transform of the first portion of Y is y = k√

a−4e
−2t sin(

√
a− 4 t). We

know that y(π) must be zero, and y(π/2) is a local maximum; the easiest way for this to be
the case is for the pseudo-period to be 2π, so that

√
a− 4 = 1, which suggests a = 5. Thus

we have

y = ke−2t sin(t) + L−1{ 3e−πs

(s+ 2)2 + 1
}

= ke−2t sin(t) + 3e−2(t−π) sin(t− π)uπ(t).

Next, we need this to be zero for all t ≥ π. This will be the case when the magnitudes of the
two terms sum to zero for t ≥ π, or when ke−2π = 3; thus k = 3e2π.
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5. [12 points] Each of the following requires a short (one equation or formula) answer. Provide
the required answer, and a short (one or two sentence) explanation.

a. [3 points] Write a linear, constant coefficient, second order, nonhomogeneous differential
equation for which the method of undetermined coefficients is not applicable.

Solution: We must have a forcing term that is not of polynomial, exponential, or
sinusoidal function, or a product of those. One such example is

y′′ + y = tan(t).

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0b. [3 points] Write a linear, constant coefficient, second order
differential equation that has the phase portrait shown to
the right.

Solution: The phase portrait shows a repeated eigen-
value (root of the characteristic equation), so this should
be something like

y′′ + 2y′ + y = 0.

This has the solutions y1 = e−t and y2 = te−t, so the eigen-

vector is
(
1 −1

)T
(=
(
y1(0) y′1(0)

)T
), as shown. (Note

also that the second solution is x = (tv +
(
0 1

)T
)e−t,

which completes the phase portrait shown.)

c. [3 points] If L[y] = f(t) is a linear, constant coefficient, second order differential equation
and L[y] = 0 is solved by y = c1e

−t + c2te
−t, write a function f(t) for which a good

solution guess would be y = At3e−t +Bt2e−t.

Solution: Note that if f(t) = e−t, we must guess y = At2e−t to avoid having any term
in the guess that is part of the homogeneous solution. Therefore we can take

f(t) = kte−t,

for any k; our guess is then y = t2(Ate−t +Be−t), as desired.

d. [3 points] Write a linear, constant coefficient, second order differential equation having a
phase portrait that is a spiral sink converging on the point (2, 0).

Solution: For the phase portrait to show a spiral sink the characteristic equation must
have complex conjugate roots with negative real part. One such is r2 + 2r + 2 = 0 (for
which r = −1± i), so that the linear operator is L = D2 + 2D+ 2. Then, for the critical
point to be (2, 0), we must have an equilibrium solution x = 2. The equation could
therefore be

x′′ + 2x′ + 2x = 4.
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6. [12 points] Consider the system given by x′ = Ax, where A =

−3 2 3
0 −1 3
1 2 −1

. Eigenvalues

of A are λ = −4, −3, and 2, with eigenvectors v1 =

−1
−1
1

, v2 =

 2
−3
2

, and v3 =

1
1
1

,

respectively.

a. [4 points] Give an initial condition for which trajectories converge to the origin. Explain
how you know your answer is correct.

Solution: The general solution to the problem is x = c1v1e
−4t + c2v2e

−3t + c3v3e
2t.

Thus any initial condition that is a linear combination of v1 and v2 will converge to the

origin. One such is x(0) =

 1
1
−1

 = −v1.

b. [4 points] Give all initial conditions for which the resulting trajectories remain bounded
for all t. Explain.

Solution: Given the general solution in (a), any initial condition that includes the third
eigenvector will diverge to infinity. Thus, the initial conditions that remain bounded are

x(0) = x0 = a

−1
−1
1

+ b

 2
−3
2

, for any (real-valued) a and b.

c. [4 points] Suppose that x(0) =

0
0
1

. Describe the solution trajectory in phase space.

What does it look like as t→∞? Explain.

Solution: We note that this initial condition is one half the sum of v1 and v3. Thus the

solution in this case is x = 1
2

−1
−1
1

 e−4t+ 1
2

1
1
1

 e2t = 1
2v1e

−4t+ 1
2v3e

2t. As t increases,

the first will decay to zero (very fast), and we will be left with an outward trajectory
along the line x = sv3. Thus we will have a trajectory in the plane determined by the two
eigenvectors, that will have a hyperbolic appearance: tracing forward it asymptotes to
the line indicated; tracing backwards it would asymptote to the line through the origin
along the other eigenvector. This is shown in the figure below, with the components
of the intial condition contributed by each eigenvector shown, and the initial condition
indicated by a point.
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7. [16 points] Our model for a ruby laser is, with N = the population inversion of atoms and
P = the intensity of the laser,

N ′ = γA− γN(1 + P ), P ′ = P (N − 1).

In lab we found that the critical points of this system are (N,P ) = (A, 0) and (N,P ) =
(1, A− 1). For this problem we will assume that γ = 1

2 ; A is, of course, also a constant.

a. [4 points] Find a linear system that approximates the nonlinear system near the critical
point (A, 0). Show that if A < 1 this critical point is asymptotically stable, and if A > 1
it is unstable.

Solution: The easiest way to find the linearization is to use the Jacobian. Here we have
N ′ = F (N,P ) = A

2 −
1
2(N +NP ), P ′ = G(N,P ) = PN − P , so that

J =

(
FN FP
GN GP

)
=

(
−1

2(1 + P ) −1
2N

P N − 1

)
.

At (A, 0), this is J(A, 0) =

(
−1

2 −A
2

0 A− 1

)
, which has eigenvalues λ = −1

2 and λ =

A − 1. Thus, if A < 1 both eigenvalues are real and negative, and the critical point is
asymptotically stable; if A > 1, the second eigenvalue is positive and the critical point
becomes unstable.

b. [6 points] Suppose that the linear system you obtained in (a) is, for some value of A,
u′ = −1

2 u − v, v′ = v. Sketch a phase portrait that shows solution trajectories of the
linear system. Explain how these trajectories are related to trajectories in the (N,P )
phase plane.

Solution: Note that this is u′ =

(
−1

2 −1
0 1

)
u, so this is apparently the result we

obtained in (a) with A = 2. Eigenvalues of the coefficient matrix are λ = −1
2 and λ = 1.

When λ = −1
2 we have the eigenvector v =

(
1 0

)T
, and when λ = 1, v =

(
−2 3

)T
.

These give the saddle point shown below.

-1.0 -0.5 0.5 1.0
u

-1.0

-0.5

0.5

1.0
v

These trajectories will be very similar to the trajectories in the (N,P ) plane at the critical
point, (A, 0).
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Problem 7, cont. We are considering the system

N ′ =
1

2
A− 1

2
N(1 + P ), P ′ = P (N − 1),

which has critical points (N,P ) = (A, 0) and (N,P ) = (1, A− 1).

c. [6 points] Suppose that, for the value of A used in (b), the coefficient matrix for the

linear system approximating (N,P ) near the critical point (1, A−1) is

(
−1 −1

2
1 0

)
, which

has eigenvalues λ = 1
2(−1 ± i). Using this information with your work in (b), sketch a

representative solution curve for P as a function of t, if P (0) = 0.01 when N(0) = 0.

Solution: We note that in the phase plane for the nonlinear system, critical points are
at (A, 0) and (1, A−1). The phase portrait near the former is given in (b); for the latter,

we know it is a spiral sink, and, because

(
−1 −1

2
1 0

)(
1
0

)
=

(
−1
1

)
, the inward spiral

must be counter clockwise. This gives the phase portrait shown below.

A
N

A-1

P

A trajectory starting at (0, 0.01) is suggested by the dashed curve. Reading the behavior
of P from this, we get the curve below. We know that it starts at (0, 0.01), that it must
remain close to the t-axis for a while, and then must oscillate around and converge to
the line P = A − 1. Finally, note that we do not know the time scale on which these
transitions take.

0.01 t

A-1

P


