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1. [15 points] Find explicit, real-valued solutions to each of the following, as indicated. For this
problem, DO NOT use Laplace transforms.

a. [7 points] Find the general solution to 2U ′′(t) + 12U ′(t) + 16U(t) = 12e4t.

Solution: This problem is nonhomogeneous, linear, and constant-coefficient. The general
solution will be U = Uc + Up, where Uc is the general solution to the complementary
homogeneous problem. For this we look for a solution U = eλt. Plugging in to the
homogeneous equation, we have 2λ2 + 12λ+ 16 = 2(λ+ 4)(λ+ 2) = 0. Thus λ = −4 or
λ = −2, so that Uc is given by Uc = c1e

−4t + c2e
−2t.

Then, to find Up, we use undertermined coefficients and look for a solution of the form
Up = Ae4t. Plugging into the differential equation, we have A(2(16) + 12(4) + 16)e4t =
A(96)e4t = 12e4t, so that A = 12

96 = 1
8 , and

U = c1e
−4t + c2e

−2t +
1

8
e4t.

b. [8 points] Find the solution to the initial value problem y′′(t) + 6y′(t) + 9y(t) = 3e−3t,
y(0) = 0, y′(0) = 1.

Solution: Again, the general solution will be y = yc + yp. For yc, the characteristic
equation is λ2 + 6λ+ 9 = (λ+ 3)2 = 0, so λ = −3, twice, and yc = c1e

−3t + c2te
−3t.

For yp, we would use the method of undetermined coefficients and guess yp = ae−3t;
however, this is part of yc, so we must multiply by t2 in order for that not to be the case.
Thus we guess yp = at2e−3t. Then y′p = (−3at2+2at)e−3t, and y′′p = (9at2−6at+2a)e−3t,
so that, plugging in, we have

(9at2 − 6at+ 2a)e−3t + 6(−3at2 + 2at)e−3t) + 9at2)e−3t = 3e−3t

2ae−3t = 3e−3t,

and yp = 3
2 t

2e−3t. The general solution is therefore y = c1e
−3t + c2te

−3t + 3
2 t

2e−3t.
Applying the initial conditions, we have y(0) = c1 = 0 and y′(0) = c2 = 1. Thus
y = te−3t + 3

2 t
2e−3t.
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2. [15 points] Find explicit, real-valued solutions to each of the following, as indicated. For this
problem, DO use Laplace transforms.

a. [7 points] Find the solution to the initial value problem y′′ + 4y′ + 20y = 0, y(0) = 1,
y′(0) = 5.

Solution: Taking the Laplace transform of both sides of the equation, we have L{y′′ +
4y′ + 20y} = 0, so that, with Y = L{y},

s2Y − s− 5 + 4(sY − 1) + 20Y = 0,

so that

Y =
s+ 9

s2 + 4s+ 20
=

(s+ 2) + 7

(s+ 2)2 + 16
.

Taking the inverse transform, we have

y = L−1{ s+ 2

(s+ 2)2 + 16
}+ L−1{ 7

(s+ 2)2 + 16
} = e−2t cos(4t) +

7

4
e−2t sin(4t).

b. [8 points] Find the solution to the initial value problem y′′ + 3y′ + 2y = e−t, y(0) = 0,
y′(0) = 0.

Solution: Proceding as above, the forward transform gives

s2Y + 3sY + 2Y =
1

s+ 1
,

so that

Y =
1

(s+ 1)2(s+ 2)
.

To find the inverse transform, we use partial fractions, letting

1

(s+ 1)2(s+ 2)
=

A

s+ 1
+

B

(s+ 1)2
+

C

s+ 2
.

Clearing the denominator,

1 = A(s+ 1)(s+ 2) +B(s+ 2) + C(s+ 1)2.

Taking s = −1 and s = −2, we find B = 1 and C = 1. Then, if s = 0, 1 = 2A+ 3, and
A = −1.

y = L−1{− 1

(s+ 1)
}+ L−1{ 1

(s+ 1)2
}+ L−1{ 1

(s+ 2)
} = −e−t + te−t + e−2t.
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3. [14 points] Suppose that L[y] = y′′ + p(t)y′ + q(t)y. (Note that L[y] here is a differential
operator, not the Laplace transform L{y}.)
a. [7 points] If L[t2] = 2 + 2tp(t) + t2q(t) = 0 and L[t2 ln(t)] = (2 ln(t) + 3) + (2t ln(t) +
t)p(t)+ t2 ln(t)q(t) = 0, which, if any, of the following functions y are solutions to L[y] = 0
on the domain t > 0? Which, if any, give a general solution on this domain? Why? (In
these expressions, c1 and c2 are real constants.)

y1 = 5t2 y2 = 5t2(1 + 2 ln(t)) y3 = c1t
2 + c2t

2 ln(t)
y4 = −t2 ln(t) y5 = t4 ln(t) y6 = c1t

2(1 + ln(t))
y7 = t−2 ln(t) y8 = W [t2, t2 ln(t)] = t3 y9 = c1(5t

2 − 2c2 ln(t))

Solution: Note that the WronskianW [t2, t2 ln(t)] is correctly given in y8: W [t2, t2 ln(t)] =
t2(2t ln(t) + t) − t3 ln(t) = t3. Thus these two functions are linearly independent, and
a general linear combination of the two will give the general solution. Further, because
L is linear, any linear combination of the two will be a solution. Thus all of y1, y2, y3,
y4, and y6 are solutions. Those solutions with an arbitrary constant multiplying each of
linearly independent solutions are general solutions; this is only y3.

b. [7 points] Now suppose that p(t) = 2 and q(t) = 10, and let L[y] = y′′+ 2y′+ 10y = g(t).
For what g(t) will the steady state solution to this problem be constant? Solve your
equation with this g(t) and explain how your solution confirms that your g(t) is correct.

Solution: We will get a constant steady state whenever g(t) = k ∈ R. Note that in
this case the characteristic equation is λ2 + 2λ+ 10 = (λ+ 1)2 + 9 = 0, so λ = −1± 3i,
and yc = c1e

−t cos(3t) + c2e
−t sin(3t). The particular solution is yp = k/10. Thus

y = c1e
−t cos(3t) + c2e

−t sin(3t) + k
10 , and as t → ∞ we see that yc → 0 and y → k

10 , a
constant.
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4. [15 points] In lab 2 we considered the van der Pol oscillator, modeled by the equation, x′′ +
µ(x2 − 1)x′ + x = 0. Recall that there is a single critical point for this system, x = 0, near
which we may model the behavior of the oscillator with the linear equation x′′ − µx′ + x = 0.

a. [5 points] Suppose that µ = −1. Find the amplitude of the solution to the linear problem
with initial condition x(0) = 2, x′(0) = 3. What is the time after which this amplitude
never exceeds some value a0?

Solution: If µ = −1, the characteristic equation for the problem is λ2 + λ + 1 = 0,

so λ = −1
2 ±

1
2

√
1− 4 = −1

2 ± i
√
3
2 . The general solution to the problem is therefore

x = c1e
−t/2 cos(

√
3
2 t) + c2e

−t/2 sin(
√
3
2 t). Applying the initial condition, x(0) = c1 = 2,

and x′(0) = −1 +
√
3
2 c2 = 3, so c2 = 8/

√
3. The solution to the initial value problem is

x = 2e−t/2 cos(
√

3 t) + (8/
√

3)e−t/2 sin(
√

3 t).
The amplitude of this solution is R =

√
4 + 64/3 e−t/2 =

√
76/3 e−t/2, so this is less

than a0 when e−t/2 < a0/
√

76/3, or, when t > 2 ln(
√

76/3/a0).

b. [5 points] Suppose we force the linear system with an oscillatory input, so that we are
considering x′′−µx′+x = cos(ωt) (and ω 6= 0). For what values of µ will the system have
an oscillatory steady-state solution with frequency ω?

Solution: Note that the characteristic equation for this problem is λ2 − µλ+ 1 = 0, so
that λ = 1

2µ±
1
2

√
µ2 − 4. Thus if µ > 0 we are guaranteed at least one positive root, and

the homogeneous solution will not decay. If µ = 0, we have no damping and the solution
to the problem will either be y = c1 cos(2t) + c2 sin(2t) + R cos(ωt − δ) or, if ω = 2, a
growing solution. In either case we do not have an oscillatory steady-state solution with
frequency ω.

If −2 < µ < 0, the homogeneous solution will be a decaying oscillatory solution,
and if µ ≤ −2 it will be a decaying exponential (and te−2t if µ = −2). In either case
the steady-state solution will be yp = a cos(ωt) + b sin(ωt), and hence be oscillatory with
frequency ω.

Thus, we need µ < 0.

1 2 3 4 5
ω
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1.4

G

c. [5 points] Suppose that, for some choice of µ, the system x′′ − µx′ + x = cos(ωt) has an
oscillatory steady-state solution, and that the gain function G(ω) for this solution is shown
to the right, below. If the steady-state solution to the problem is yss = R cos(t − π/2),
what are the R in the solution, and ω in the forcing term? Why?

Solution: The steady state solution to the problem
has frequency ω, so ω = 1. Then, if ω = 1, we see from
the gain function that R = 1.



Math 216 / Exam 2 (27 March, 2019) page 6

5. [14 points] In each of the following we consider a linear, second order, constant coefficient
operator L, so that L[y] = 0 is a homogenous differential equation. (Note, however, that the
operator L may be different in each of the parts below.) Let y(0) = y0 and y′(0) = v0, where
y0 and v0 are real numbers.

a. [7 points] If the general solution to the equation L[y] = 0 is y = c1e
−3t cos(2t) +

c2e
−3t sin(2t), what is the Laplace transform Y (s) = L{y(t)}?

Solution: The general solution tells us that the two roots of the characteristic polynomial
are λ = −3± 2i. Thus the characteristic polynomial is (λ+ 3)2 + 4 = λ2 + 6λ+ 13, and
so L[y] = y′′ + 6y′ + 13y. The forward transform of this will be L{y′′ + 6y′ + 13y} =
−sy0 − v0 + s2Y − 6y0 + 6sY + 13Y = 0, and

Y =
sy0 + v0 + 6y0
s2 + 6s+ 13

.

b. [7 points] Now suppose that we are solving L[y] = k, for some constant k, and that y0 and
v0 are both zero (so that y(0) = y′(0) = 0). If Y (s) = L{y(t)} is Y = k

s(s+3)(s+4) , what
is the differential equation we are solving, and the general solution to the complementary
homogeneous problem? Explain how you know your answer is correct.

Solution: Note that L{k} = k
s . Therefore the operator L is L = (D + 3)(D + 4), to get

the quadratic term multiplying s in the denominator of Y . That is, L = D2+7D+12, so
that L[y] = y′′+7y′+12y, and the general solution to the problem is y = c1e

−3t+c2e
−4t.
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6. [15 points] Each of the following concerns a linear, second order, constant coefficient differential
equation y′′ + py′ + qy = 0.

a. [7 points] If the general solution to the problem is y = c1e
2t+c2e

4t, sketch a phase portrait
for the system.

Solution: In matrix form, the general solution to the system will be x =

(
y
y′

)
. Thus

eigenvectors for the system will be v1 =

(
1
2

)
and v2 =

(
1
4

)
, with λ = 2 and λ = 4,

respectively. We therefore have the phase portrait shown.
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b. [8 points] Now suppose that for some real-valued α, we have p = 2α and q = 1, so that
we are considering y′′ + 2αy′ + y = 0. For what values of α, if any
(i) do all solutions to the differential equation decay to zero?
(ii) are there solutions that do not decay to zero?
(iii) will the general solution be a decaying sinusoidal function?

Solution: We see that the characteristic polynomial is in this case λ2 + 2αλ+ 1 = 0, so
that λ = −α ±

√
α2 − 1. Thus: (i) The square root can never be larger in magnitude

than α, so for all α > 0 we will have solutions that decay to zero. (ii) If α ≤ 0, there will
be solutions that do not decay to zero, and, in fact, if α < 0 all solutions will diverge to
infinity. (iii) If |α| < 1, the square root will be imaginary, so that λ = −α ± i

√
1− α2.

In this case solutions if 0 < α < 1 we will have decaying sinusoidal solutions.
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7. [12 points] For each of the following give an example, as indicated, and provide a short (one
or two sentence) explanation of why your answer is correct.

a. [4 points] Give an example of an initial value problem with a linear, second-order, homo-
geneous differential equation for which there is no guarantee of a unique solution.

Solution: A linear, second-order, homogeneous differential equation has the form y′′ +
p(t)y′ + q(t)y = 0. For there to be no guarantee of a unique solution one or both of the
functions p(t) and q(t) must be discontinuous at the initial condition. Thus, one such
example is y′′ + t−1y′ + y = 0, y(0) = y0, y

′(0) = v0.

b. [4 points] Give an example of a linear, second-order, constant-coefficient, nonhomogeneous
differential for which we cannot use the method of undetermined coefficients. What form
will the general solution to your equation take?

Solution: We know that undetermined coefficients fails when the forcing is not polyno-
mial, sinusoidal, exponential or a product of these. Thus one such example is y′′+2y′+y =
t−1. The solution will be of the form y = c1e

−t + c2te
−t + u1(t)e

−t + u2(t)te
−t, using

variation of parameters.

c. [4 points] Give an example of a linear, second-order, nonhomogeneous differential equation
for which the Laplace transform of the dependent variable y could be L{y(t)} = Y (s) =
1
s+1 + 1

s+2 + 1
s+3 .

Solution: The equation is second-order, so the general solution will be of the form
y = c1y1 + c2y2 + yp. Here we see that the solution is y = e−t + e−2t + e−3t. Recognizing
this, there are a number of ways to proceed. The first is to identify two of the three
exponentials must be part of the complementary homogeneous problem, so that the
characteristic polynomial is one of (λ+1)(λ+2) = λ2+3λ+2, (λ+2)(λ+3) = λ2+5λ+6, or
(λ+1)(λ+3) = λ2+4λ+3. With these, the equation must be one of y′′+3y′+2y = 2e−3t,
y′′ + 5y′ + 6y = 2e−t, or y′′ + 4y′ + 3y = −e−2t.

A second approach is to take this solution and create a differential equation; for
example, if y = e−t + e−2t + e−3t, then y′′ = e−t + 4e−2t + 9e−3t is a linear, second-
order nonhomogeneous differential equation for which the Laplace transform could be as
indicated. With some care, it is possible to pick other solutions as well.


