1. [14 points] Find explicit real-valued general solutions for each of the following. (Note that minimal partial credit will be given on this problem.)
a. $[7$ points $] y^{\prime}=2 x\left(e^{-x^{2}}-y\right)$

$$
y=\quad\left(x^{2}+C\right) e^{-x^{2}}
$$

Solution: We use the method of integrating factors. Our equation is

$$
y^{\prime}+2 x y=2 x e^{-x^{2}},
$$

so that the integrating factor is $\mu=e^{\int 2 x d x}=e^{x^{2}}$. Thus we have

$$
\left(y e^{x^{2}}\right)^{\prime}=2 x, \quad \text { so that } \quad y e^{x^{2}}=x^{2}+C .
$$

Solving for $y, y=x^{2} e^{-x^{2}}+C e^{-x^{2}}$.
b. [7 points] $y^{\prime \prime}=-4 y^{\prime}-13 y$

$$
y=\underline{c_{1}} e^{-2 x} \cos (3 x)+c_{2} e^{-2 x} \sin (3 x)
$$

Solution: This is a linear, constant coefficient problem, so we guess $y=e^{r x}$. Then $r$ satisfies the characteristic equation $r^{2}+4 r+13=0$, or $(r+2)^{2}+9=0$, so $r=-2 \pm 3 i$. Thus $y=c_{1} e^{-2 x} \cos (3 x)+c_{2} e^{-2 x} \sin (3 x)$.

