- **1**. [14 points] Find explicit real-valued general solutions for each of the following. (Note that minimal partial credit will be given on this problem.)
 - **a**. [7 points] $y' = 2x(e^{-x^2} y)$

 $y = (x^2 + C) e^{-x^2}$

Solution: We use the method of integrating factors. Our equation is $y' + 2xy = 2xe^{-x^2}$,
so that the integrating factor is $\mu = e^{\int 2x \, dx} = e^{x^2}$. Thus we have $(y e^{x^2})' = 2x$, so that $y e^{x^2} = x^2 + C$.

Solving for $y, y = x^2 e^{-x^2} + C e^{-x^2}$.

b. [7 points] y'' = -4y' - 13y

 $y = c_1 e^{-2x} \cos(3x) + c_2 e^{-2x} \sin(3x)$

Solution: This is a linear, constant coefficient problem, so we guess $y = e^{rx}$. Then r satisfies the characteristic equation $r^2 + 4r + 13 = 0$, or $(r+2)^2 + 9 = 0$, so $r = -2 \pm 3i$. Thus $y = c_1 e^{-2x} \cos(3x) + c_2 e^{-2x} \sin(3x)$.