2. [14 points] Solve each of the following to find explicit real-valued solutions for y. (Note that minimal partial credit will be given on this problem.)
a. [7 points] $y^{\prime}=x /\left(y\left(1+x^{2}\right)\right), y(0)=1$.

$$
y=\sqrt{\ln \left(1+x^{2}\right)+1}
$$

Solution: This is a nonlinear separable problem, $y y^{\prime}=x /\left(1+x^{2}\right)$. Integrating both sides, we have

$$
\frac{1}{2} y^{2}=\frac{1}{2} \ln \left(1+x^{2}\right)+k, \quad \text { so that } \quad y= \pm \sqrt{\ln \left(1+x^{2}\right)+C}
$$

The initial condition $y(0)=1$ requires that we take the positive sign for the square root and $C=1$, so we have

$$
y=\sqrt{\ln \left(1+x^{2}\right)+1} .
$$

b. [7 points $] y^{\prime \prime}+14 y^{\prime}+13 y=0, y(0)=2, y^{\prime}(0)=-2$.

$$
y=\frac{2 e^{-x}}{}
$$

Solution: This is a linear, constant coefficient problem, so we guess $y=e^{r x}$. Then r satisfies the characteristic equation $r^{2}+14 r+13=0$, or $(r+1)(r+13)=0$, so that $r=-1$ or $r=-13$. Thus the general solution is $y=c_{1} e^{-t}+c_{2} e^{-13 x}$. The initial conditions require that $c_{1}+c_{2}=2$ and $-c_{1}-13 c_{2}=-2$, so that $c_{1}=2$ and $c_{2}=0$. The solution is thus $y=2 e^{-x}$.

