2. [14 points] Solve each of the following to find explicit real-valued solutions for y. (Note that minimal partial credit will be given on this problem.)

a. [7 points] $y' = x/(y(1+x^2)), y(0) = 1.$

$$y = \underline{\sqrt{\ln(1+x^2)+1}}$$

Solution: This is a nonlinear separable problem, $y y' = x/(1 + x^2)$. Integrating both sides, we have

$$\frac{1}{2}y^2 = \frac{1}{2}\ln(1+x^2) + k$$
, so that $y = \pm\sqrt{\ln(1+x^2) + C}$.

The initial condition y(0) = 1 requires that we take the positive sign for the square root and C = 1, so we have

$$y = \sqrt{\ln(1+x^2)} + 1.$$

b. [7 points] y'' + 14y' + 13y = 0, y(0) = 2, y'(0) = -2.

Solution: This is a linear, constant coefficient problem, so we guess $y = e^{rx}$. Then r satisfies the characteristic equation $r^2 + 14r + 13 = 0$, or (r+1)(r+13) = 0, so that r = -1 or r = -13. Thus the general solution is $y = c_1 e^{-t} + c_2 e^{-13x}$. The initial conditions require that $c_1 + c_2 = 2$ and $-c_1 - 13c_2 = -2$, so that $c_1 = 2$ and $c_2 = 0$. The solution is thus $y = 2e^{-x}$.