3. [8 points] A Whiffle Ball is a lightweight plastic ball with holes in at least one hemisphere. If we assume a viscous friction, the upward motion of a thrown or hit whiffle ball may be described in terms of its velocity v or vertical position y by $v^{\prime}=-\frac{c}{m} v-g$ or $y^{\prime \prime}=-\frac{c}{m} y^{\prime}-g$. In this problem we take $c / m=10$ and $g=10$ (that is, approximately $9.8 \mathrm{~m} / \mathrm{s}^{2}$). If we start with $y(0)=0$ and $v(0)=5 \mathrm{~m} / \mathrm{s}$, find the velocity v and position y of the ball.

$$
\begin{aligned}
& v=\frac{6 e^{-10 t}-1}{\frac{3}{5}\left(1-e^{-10 t}\right)-t} \\
& y=\frac{1}{}=\frac{1}{2}
\end{aligned}
$$

Solution: Solving for v using the method of integrating factors, we have $v^{\prime}+10 v=-10$, or

$$
e^{10 t}\left(v^{\prime}+10 v\right)=\left(v e^{10 t}\right)^{\prime}=-10 e^{10 t}
$$

Thus, after integrating and applying the initial condition,

$$
v e^{10 t}=-e^{10 t}+C=6-e^{10 t} .
$$

We may obtain the same solution by separating variables $(d v /(v+1)=10 d t$, so that $\ln |v+1|=$ $10 t+k$, etc.). We have $v=6 e^{-10 t}-1$. Integrating to find y, we have $y=-\frac{3}{5} e^{-10 t}-t+C$, so that, for $y(0)=0, y=\frac{3}{5}\left(1-e^{-10 t}\right)-t$.

