4. [18 points] A model for a population with harvesting (e.g., a population of fish from which fish are caught) is \(P' = f(P) = P\left(1 - \frac{P}{K}\right) - H, \) where \(K \) is a limiting population and \(H \) the harvesting rate. \(P \) and \(K \) are measured in some unit—perhaps millions of pounds of fish. Suppose that for some value of \(K \), the graphs of \(f(P) \) are as in the graph shown below.

a. [6 points] Plot phase lines for this equation when \(H = 0, \) \(H = 1 \) and \(H = 2. \) For each, identify all equilibrium solutions and their stability.

b. [5 points] Sketch qualitatively accurate solution curves for the case \(H = 0. \) Include enough initial conditions to show all solution behaviors.
Problem 4, continued. Instructions are reproduced here:

A model for a population with harvesting (e.g., a population of fish from which fish are caught) is

\[P' = f(P) = P\left(1 - \frac{P}{K}\right) - H, \]

where \(K \) is a limiting population and \(H \) the harvesting rate. \(P \) and \(K \) are measured in some unit—perhaps millions of pounds of fish. Suppose that for some value of \(K \), the graphs of \(f(P) \) are as in the graph shown below.

\[f(P) = \begin{cases}
0 & H = 0 \\
1/2 & H = 1/2 \\
1 & H = 1 \\
3/2 & H = 3/2 \\
2 & H = 2
\end{cases} \]

\[P \]

\[f(P) \]

c. [4 points] This problem and your work on it provide an example of a model with a bifurcation. Draw the bifurcation diagram for this on the axes provided below.

\[P \]

\[f(P) \]

d. [3 points] Explain what your work in the preceding indicates about the long-term survival of the harvested population (fish).