5. [16 points] Consider the system

$$
\begin{equation*}
\mathbf{x}^{\prime}=\mathbf{A x} \tag{1}
\end{equation*}
$$

for some real-valued, constant, 2×2 matrix \mathbf{A}. Suppose that one solution to (1) is $\mathbf{x}=$ $\binom{-1}{1} e^{-t}$. Identify each of the following as true or false, by circling "True" or "False" as appropriate, and provide a short (one sentence) explanation indicating why you selected that answer.
a. [4 points] A possible component plot of solutions to (1) is

True
False

b. [4 points] The general solution to (1) could be $\mathbf{x}=c_{1}\binom{1}{-1} e^{-t}+c_{2}\binom{0}{1} e^{t}$.

True
False
c. [4 points] The equation $\mathbf{A w}=-\mathbf{w}$ has infinitely many solutions \mathbf{w}.

True
False
d. [4 points] An eigenvalue of the matrix \mathbf{A} could be $\lambda=1+i$.

True
False

