1. [14 points] Find real-valued solutions for each of the following, as indicated. (Note that minimal partial credit will be given on this problem.)
a. [7 points] Find the general solution to $y^{\prime}=\sin (t)-\frac{\sin (t)}{\cos (t)} y$.

Solution: This is linear and not separable, so we must use an integrating factor. The equation may be rewritten as

$$
y^{\prime}+\frac{\sin (t)}{\cos (t)} y=\sin (t)
$$

so the integrating factor is $\mu=e^{\int \frac{\sin (t)}{\cos (t)} d t}=e^{-\ln (|\cos (t)|)}=1 / \cos (t)$ (we may drop the \pm because of the constant of integration which will divide out from the equation after multiplication by μ). Multiplying through by this, we have

$$
\left(\frac{1}{\cos (t)} y\right)^{\prime}=\frac{\sin (t)}{\cos (t)}
$$

so that after integrating both sides we have

$$
\frac{1}{\cos (t)} y=-\ln (|\cos (t)|)+C,
$$

and $y=-\cos (t) \ln (|\cos (t)|)+C \cos (t)$.
b. [7 points] Find a solution, explicit or implicit, for y, if

$$
y^{\prime}=\frac{1+\sin (t)}{1+\cos (y)}, \quad y(\pi)=0 .
$$

Solution: This is nonlinear, but separable. Separating variables, we have

$$
(1+\cos (y)) y^{\prime}=1+\sin (t) .
$$

Integrating, we have $y+\sin (y)=t-\cos (t)+C$. Applying the initial condition, we have $0+0=\pi+1+C$, so $C=-1-\pi$, and our (implicit) solution is

$$
y+\sin (y)=t-\cos (t)-(1+\pi) .
$$

