2. [16 points] Find real-valued solutions to each of the following, as indicated. (Note that minimal partial credit will be given on this problem.)
a. [8 points] The general solution to the system $x_{1}^{\prime}=2 x_{1}+3 x_{2}, x_{2}^{\prime}=x_{1}+4 x_{2}$

Solution: This is $\mathbf{x}^{\prime}=\mathbf{A x}$ for $\mathbf{A}=\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)$. We know solutions will be of the form $\mathbf{x}=\mathbf{v} e^{\lambda t}$, where \mathbf{v} and λ are the eigenvectors and eigenvalues of \mathbf{A}. Solving for these, we require

$$
\begin{aligned}
\Delta=\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\operatorname{det}\left(\left(\begin{array}{cc}
2-\lambda & 3 \\
1 & 4-\lambda
\end{array}\right)\right. & =(\lambda-2)(\lambda-4)-3 \\
& =\lambda^{2}-6 \lambda+5=(\lambda-5)(\lambda-1)=0 .
\end{aligned}
$$

Thus $\lambda=1$ or $\lambda=5$. If $\lambda=1$, the eigenvector $\mathbf{v}=\binom{v_{1}}{v_{2}}$ satisfies $v_{1}+3 v_{2}=0$, so that $\mathbf{v}=\binom{3}{-1}$. Similarly, if $\lambda=5$, the eigenvector satisfies $v_{1}-v_{2}=0$, and $\mathbf{v}=\binom{1}{1}$. Thus the general solution is

$$
\mathbf{x}=\binom{x_{1}}{x_{2}}=c_{1}\binom{3}{-1} e^{t}+c_{2}\binom{1}{1} e^{5 t} .
$$

b. [8 points] The solution to $\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{cc}1 & 2 \\ -1 & -1\end{array}\right)\binom{x_{1}}{x_{2}}$, with $\binom{x_{1}(0)}{x_{2}(0)}=\binom{4}{-2}$.

Solution: Again, we look for the eigenvalues and eigenvectors of the coefficient matrix. We have $\Delta=(1-\lambda)(-1-\lambda)+2=\lambda^{2}+1=0$, so that $\lambda= \pm i$. If $\lambda=i$, the eigenvector v satisfies

$$
\left(\begin{array}{ccc}
1-i & 2 & \\
-1 & & -1-i
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0},
$$

so that from the first row we see we may take $v_{1}=2$ and $v_{2}=-1+i$. Thus a complexvalued solution

$$
\mathbf{x}=\binom{2}{-1+i}(\cos (t)+i \sin (t))=\binom{2 \cos (t)+2 i \sin (t)}{-\cos (t)-\sin (t)+i(\cos (t)-\sin (t))} .
$$

The real and imaginary parts of this are linearly independent solutions to the system, and so a real-valued general solution is

$$
\mathbf{x}=c_{1}\binom{2 \cos (t)}{-\cos (t)-\sin (t)}+c_{2}\binom{2 \sin (t)}{\cos (t)-\sin (t)} .
$$

To get the desired initial condition, we take $c_{1}=2$ and $c_{2}=0$, so that

$$
\mathbf{x}=\binom{4 \cos (t)}{-2(\cos (t)+\sin (t))} .
$$

