3. [12 points] Consider an abandoned zero-entry pool as suggested by the figure to the right, below. (The front face of the pool is shown with bold lines.) In the figure, w, L and h are the fixed dimensions of the pool, and x and y characterize the part that is filled with water. The corresponding volume of the filled section is $V=\frac{1}{2} w x y$.
a. [8 points] If the pool slowly evaporates at a volumetric rate proportional to its top surface area, write a differential equation for the volume of the water in the pool.

Solution: We have $\frac{d V}{d t}=-\alpha x w$.

By similar triangles, $x / y=L / h$, so that $y=h x / L$. Thus we can relate x and V using the volume formula provided: $V=\frac{1}{2} w x y=\frac{h w}{2 L} x^{2}$, and so $x=\sqrt{\frac{2 L}{h w}} \sqrt{V}$. Thus

$$
\frac{d V}{d t}=-\alpha \sqrt{\frac{2 L w}{h}} \sqrt{V}=-k \sqrt{V} .
$$

b. [4 points] Solve your equation from (a) with the initial condition $V(0)=V_{0}$. At what time is the pool finally empty? (If you are unable to find an equation in (a), you may proceed with the equation $V^{\prime}=-k \sqrt{V}$.)

Solution: We solve by separating variables: $V^{-1 / 2} V^{\prime}=-k$, so that on integrating both sides of the equation we have $2 \sqrt{V}=-k t+C^{\prime}$, so that $V=(C-k t / 2)^{2}$. Applying the initial condition, $V(0)=C^{2}=V_{0}$, so that $V=\left(\sqrt{V_{0}}-k t / 2\right)^{2}$. The pool is empty when

$$
t=2 \frac{\sqrt{V_{0}}}{k}=2 \sqrt{\frac{V_{0} h w}{L \alpha^{2}}} .
$$

