5. [16 points] Consider the system

$$
\begin{equation*}
\mathrm{x}^{\prime}=\mathbf{A} \mathbf{x}, \tag{1}
\end{equation*}
$$

for some real-valued, constant, 2×2 matrix \mathbf{A}. Suppose that one solution to (1) is $\mathbf{x}=$ $\binom{-1}{1} e^{-t}$. Identify each of the following as true or false, by circling "True" or "False" as appropriate, and provide a short (one sentence) explanation indicating why you selected that answer.
a. [4 points] A possible component plot of solutions to (1) is

Solution: This cannot be a correct plot, because the solutions x_{1} and x_{2} are decaying oscillatory solutions; given one solution with only real exponentials, we know that there can be no oscillatory solutions.

$$
\text { True } \quad \text { False }
$$

b. [4 points] The general solution to (1) could be $\mathbf{x}=c_{1}\binom{1}{-1} e^{-t}+c_{2}\binom{0}{1} e^{t}$.

True False
Solution: This could certainly be correct; we need only that the second eigenvalue of A be $\lambda=1$ with corresponding eigenvector $\mathbf{v}=\binom{0}{1}$. (The reversed sign on the first solution is immaterial, as the eigenvectors are only unique up to a constant multiple.)
c. [4 points] The equation $\mathbf{A w}=-\mathbf{w}$ has infinitely many solutions \mathbf{w}.

True False
Solution: Because we know one solution to the system is the \mathbf{x} given, we know that one of the eigenvalues of \mathbf{A} is $\lambda=-1$. This is just the eigenvalue problem with $\lambda=-1$ plugged in, so we know that there are an infinite number of solutions.
d. [4 points] An eigenvalue of the matrix \mathbf{A} could be $\lambda=1+i$.

True
False
Solution: We know that $\lambda=-1$ is one eigenvalue, that there are at most two (because A is 2×2), and the complex eigenvalues must come as a complex-conjugate pair.

