6. [12 points] Consider the system of equations

$$
\begin{aligned}
x_{1}^{\prime} & =x_{2} \\
x_{2}^{\prime} & =-x_{1}+\alpha x_{2},
\end{aligned}
$$

where α is a real-valued constant. For each of the phase portraits shown below, indicate all values for α that could result in this sytem having a phase portrait of that type and with the indicated stability. If it is not possible, write "not possible" and give a short explanation why.
a. [6 points]

Solution: For both of these we need the eigenvalues; here, they are given by $\lambda(\alpha-\lambda)+1=$ 0 , or $\lambda^{2}-\alpha \lambda-1=0$, so $\lambda=\frac{\alpha}{2} \pm \frac{1}{2} \sqrt{\alpha^{2}-4}$. For this phase portrait we need a complex eigenvalue with positive real part, so $0<\alpha<2$.
b. [6 points]

Solution: Using the value of λ found above, we require that there be two real, negative roots. Thus we need $\alpha<-2$.

