Problem 5, continued.
c. [4 points] What do you expect the long-term value for the volume $V(t)$ to be? Can you predict the long-term value for $p(t)$ ? If $k=1$, which of the graphed functions to the right is $V(t)$ and which is $p(t)$ ? Why?

6. [10 points] Consider the initial value problem $\left(1-y^{3}\right) \frac{d y}{d t}=1, y(0)=0$.
a. [5 points] Without solving it, will this initial value problem have a unique solution?
b. [5 points] Solve the problem. Based on your solution, for what range of $t$ and $y$ values would you expect the solution to exist? Why?

