1. [15 points] For each of the following, find explicit, real-valued solutions, as indicated.
a. [7 points] The general solution to $x^{\prime}=3 y, y^{\prime}=2 x+y$

Solution: As a matrix equation, this is $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$, with $\mathbf{x}=\binom{x}{y}$ and $\mathbf{A}=\left(\begin{array}{ll}0 & 3 \\ 2 & 1\end{array}\right)$. Eigenvalues of \mathbf{A} are given by

$$
\operatorname{det}\left(\left(\begin{array}{cc}
-\lambda & 3 \\
2 & 1-\lambda
\end{array}\right)\right)=-\lambda(1-\lambda)-6=\lambda^{2}-\lambda-6=(\lambda-3)(\lambda+2)=0
$$

Thus $\lambda=-2,3$. If $\lambda=-2$, the eigenvector satisfies $\left(\begin{array}{ll}2 & 3 \\ 2 & 3\end{array}\right) \mathbf{v}=\mathbf{0}$, so that $\mathbf{v}=\binom{3}{-2}$.
Similarly, if $\lambda=3$, we have $\left(\begin{array}{cc}-3 & 3 \\ 2 & -2\end{array}\right) \mathbf{v}=\mathbf{0}$, so that $\mathbf{v}=\binom{1}{1}$. The general solution is therefore

$$
\mathbf{x}=\binom{x}{y}=c_{1}\binom{3}{-2} e^{-2 t}+c_{2}\binom{1}{1} e^{3 t}
$$

b. [8 points] The solution to $\mathbf{x}^{\prime}=\left(\begin{array}{ll}0 & -2 \\ 2 & -4\end{array}\right) \mathbf{x}, \mathbf{x}(0)=\binom{3}{0}$.

Solution: Eigenvalues of the coefficient matrix satisfy

$$
\operatorname{det}\left(\left(\begin{array}{cc}
-\lambda & -2 \\
2 & -4-\lambda
\end{array}\right)\right)=\lambda^{2}+4 \lambda+4=(\lambda+2)^{2}=0
$$

so $\lambda=-2$, twice. Eigenvectors satisfy

$$
\left(\begin{array}{ll}
2 & -2 \\
2 & -2
\end{array}\right) \mathbf{v}=\mathbf{0}
$$

so $\mathbf{v}=\binom{1}{1}$. To find a second solution, we look for $\mathbf{x}=(t \mathbf{v}+\mathbf{w}) e^{-2 t}$, so that

$$
\left(\begin{array}{ll}
2 & -2 \\
2 & -2
\end{array}\right) \mathbf{w}=\mathbf{v}
$$

This is $2 w_{1}-2 w_{2}=1$, so we may take $w_{1}=\frac{1}{2}$ and $w_{2}=0$. The general solution is therefore

$$
\mathbf{x}=c_{1}\binom{1}{1} e^{-2 t}+c_{2}\left(t\binom{1}{1}+\binom{1 / 2}{0}\right) e^{-2 t}
$$

Plugging in the initial condition, we have $c_{1}+c_{2} / 2=3$, and $c_{1}=0$. Thus $c_{2}=6$, and

$$
\mathbf{x}=6\left(t\binom{1}{1}+\binom{1 / 2}{0}\right) e^{-2 t}
$$

