- 4. [15 points] For each of the following, find explicit, real-valued solutions, as indicated.
 - **a**. [7 points] Find the general solution to $y' = 7 \frac{\cos(t)}{2 + \sin(t)}y$.

Solution: This is linear, but not separable. Rewriting in standard form, we have $y' + \frac{\cos(t)}{2+\sin(t)}y = -7$, so that an integrating factor is $\mu = \exp(\int \frac{\cos(t)}{2+\sin(t)}dt) = \exp(\ln|2 + \sin(t)|) = 2 + \sin(t)$. Then $((2 + \sin(t))y)' = 7(2 + \sin(t))$, so that $(2 + \sin(t))y = 7(2t - \cos(t)) + C$, and $14t - 7\cos(t) + C$

$$y = \frac{1}{2 + \sin(t)} + \frac{1}{2 + \sin(t)}$$

b. [8 points] Solve the initial value problem: $\frac{y}{t^2+5}y'=1, y(0)=-2$

Solution: This is nonlinear, and fortunately separable. Separating, we have $yy' = t^2 + 5$, so that $\frac{1}{2}y^2 = \frac{1}{3}t^3 + 5t + \tilde{C}$. Solving for y (and letting $C = 2\tilde{C}$),

$$y = \pm \sqrt{\frac{2}{3}t^3 + 10t + C}.$$

Applying the initial condition, we must take the negative square root and C = 4, so that

$$y = -\sqrt{\frac{2}{3}t^3 + 10t + 4}.$$