4. [15 points] For each of the following, find explicit, real-valued solutions, as indicated.
a. [7 points] Find the general solution to $y^{\prime}=7-\frac{\cos (t)}{2+\sin (t)} y$.

Solution: This is linear, but not separable. Rewriting in standard form, we have $y^{\prime}+\frac{\cos (t)}{2+\sin (t)} y=-7$, so that an integrating factor is $\mu=\exp \left(\int \frac{\cos (t)}{2+\sin (t)} d t\right)=\exp (\ln \mid 2+$ $\sin (t) \mid)=2+\sin (t)$. Then $((2+\sin (t)) y)^{\prime}=7(2+\sin (t))$, so that $(2+\sin (t)) y=$ $7(2 t-\cos (t))+C$, and

$$
y=\frac{14 t-7 \cos (t)}{2+\sin (t)}+\frac{C}{2+\sin (t)} .
$$

b. [8 points] Solve the initial value problem: $\frac{y}{t^{2}+5} y^{\prime}=1, y(0)=-2$

Solution: This is nonlinear, and fortunately separable. Separating, we have $y y^{\prime}=t^{2}+5$, so that $\frac{1}{2} y^{2}=\frac{1}{3} t^{3}+5 t+\tilde{C}$. Solving for y (and letting $C=2 \tilde{C}$),

$$
y= \pm \sqrt{\frac{2}{3} t^{3}+10 t+C}
$$

Applying the initial condition, we must take the negative square root and $C=4$, so that

$$
y=-\sqrt{\frac{2}{3} t^{3}+10 t+4}
$$

