Problem 5, continued.
c. [4 points] What do you expect the long-term value for the volume $V(t)$ to be? Can you predict the long-term value for $p(t)$? If $k=1$, which of the graphed functions to the right is $V(t)$ and which is $p(t)$? Why?
Solution: Note that the volume starts larger than 1, so
 initially $V^{\prime}<0$. There is an equilibrium volume, $k \sqrt{V}=1$, so that $V=1 / k^{2}$, to which the volume will exponentially approach. In the long-term, then, we expect $V \rightarrow 1 / k^{2}$, and therefore we expect the long-term dynamics of p to be given by $p^{\prime}=f(p)=2-$ $k p / \sqrt{1 / k^{2}}=2-k^{3} p$. The equilibrium value is $p_{0}=2 / k^{3}$, and because $f^{\prime}\left(p_{0}\right)=-k^{3}<0$, it is stable. We therefore expect that $p \rightarrow 2 / k^{3}$. Finally, if $k=1$, then $V \rightarrow 1$ and $p \rightarrow 2$, so the solid curve in the figure must be $p(t)$ and the dashed one $V(t)$.
6. [10 points] Consider the initial value problem $\left(1-y^{3}\right) \frac{d y}{d t}=1, y(0)=0$.
a. [5 points] Without solving it, will this initial value problem have a unique solution?

Solution: Note that this is the same as $y^{\prime}=f(y)=1 /\left(1-y^{3}\right)$. The function f and its derivative f_{y} are discontinuous only if $y=1$, so there will be a unique solution provided $y(0) \neq-1$. Thus we are guaranteed that there will be a unique solution.
b. [5 points] Solve the problem. Based on your solution, for what range of t and y values would you expect the solution to exist? Why?
Solution: Integrating both sides with respect to t, we have $y-\frac{1}{4} y^{4}+C=t$, so that with $y(0)=0$ we require $C=0$ and have $t=y-\frac{1}{4} y^{4}$. Thinking of t as a function of y, this is a curve like a parabola opening down around the t-axis. Its vertex is when $\frac{d}{d y}\left(y-\frac{1}{4} y^{4}\right)=1-y^{3}=0$, or $y=1$. When $y=1, t=\frac{3}{4}$, and at that point the solution vanishes. Thus we have a (unique) solution only for $0 \leq t<\frac{3}{4}, 0 \leq y<1$. We may include $t=\frac{3}{4}$ and $y=1$ in these, as the function continues to be well defined there.

