2. [15 points] Consider the direction field shown to the right, which corresponds to a first order differential equation $y^{\prime}=$ $f(t, y)$.
a. [5 points] Which of the following functions $f(t, y)$ is most likely to be the function in this differential equation? Briefly explain how you made your choice.

$$
\begin{aligned}
& f(t, y)=(y+1)(y-1) \\
& f(t, y)=\frac{2}{(y+1)(y-1)} \\
& f(t, y)=\frac{\sin \left(\frac{\pi}{2} t\right)}{y^{2}-1}
\end{aligned}
$$

$$
f(t, y)=\sin \left(\frac{\pi}{2} y\right)
$$

$$
f(t, y)=\frac{2}{\sin \left(\frac{\pi}{2} y\right)}
$$

$$
f(t, y)=\frac{y+1}{y-1}
$$

b. [5 points] Sketch, on the direction field or below, the solution to $y^{\prime}=f(t, y), y(1)=0$. For what values of t and y will it exist (you should be able to determine these without calculations)? Why?
c. [5 points] Based on your choice of $f(t, y)$ in (a) and the corresponding direction field, are there any initial conditions $\left(t_{0}, y_{0}\right)$ for which you cannot guarantee that there exists a unique solution? Explain.

