4. [12 points] For each of the following give an example, as indicated. It may be useful to note that the eigenvalues and eigenvectors of the matrix $\mathbf{A}=\left(\begin{array}{cc}0 & 2 \\ -1 & 3\end{array}\right)$ are $\lambda=1, \mathbf{v}=\binom{2}{1}$ and $\lambda=2, \mathbf{v}=\binom{1}{1}$.
a. [3 points] Give an example of a linear first-order equation that is not separable.
b. [3 points] Give two distinct, non-zero solutions \mathbf{x}_{1} and \mathbf{x}_{2} to the system $\mathbf{x}^{\prime}=\left(\begin{array}{cc}0 & 2 \\ -1 & 3\end{array}\right) \mathbf{x}$ for which $\mathbf{x}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}$ is not a general solution to the system.
c. [3 points] Give a 2×2 matrix \mathbf{B}, with all non-zero entries, for which $\mathbf{B x}=\mathbf{0}$ has an infinite number of solutions.
d. [3 points] Give three different vectors, $\mathbf{w}_{1}, \mathbf{w}_{2}$, and \mathbf{w}_{3}, for which $\left(\begin{array}{cc}0 & 2 \\ -1 & 3\end{array}\right) \mathbf{w}_{j}=k \mathbf{w}_{j}$, for some k. (The value of k need not be the same for all three vectors.)
