5. [16 points] Recall that the van der Pol equation we studied in lab 1 is given by

$$
x^{\prime \prime}+\mu f^{\prime}(x) x^{\prime}+x=0
$$

or, as a system in x and $y=x^{\prime}$,

$$
x^{\prime}=y, \quad y^{\prime}=-x-\mu f^{\prime}(x) y
$$

for some function $f^{\prime}(x)$. We assume that $\mu>0$.
a. [3 points] Show that for any choice of $f^{\prime}(x)$, the only critical point of the system formulation of the van der Pol equation is $(0,0)$.
b. [4 points] Suppose that the Taylor expansion of $f^{\prime}(x)$ around $x=0$ is $f^{\prime}(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=$ $a_{0}+a_{1} x+\cdots$. Use this expansion to linearize your system. Your linear system will involve the coefficients a_{n}.

Problem 5, continued. We are considering the van der Pol system.
c. [5 points] Suppose that the system you obtained in (b) is $x^{\prime}=-a_{0} \mu x-y, y^{\prime}=x$. For what value or values of a_{0} will the phase portrait for this system have only one straight-line of solution trajectories? No straight-line trajectories? Explain.
d. [4 points] When a_{0} is picked so that there is a single straight-line of solution trajectories in the phase portrait for this system, give an initial condition that will result in a straight-line trajectory in the phase plane.

