3. [15 points] Consider the equation $y^{\prime}=a y-y^{4}$.
a. [5 points] Find all critical points for this equation.

Solution: Critical points are where $y^{\prime}=0=y\left(a-y^{3}\right)$, so that $y=0$ or $y=a^{1 / 3}$.
b. [6 points] Draw a phase line for each of the cases $a=-2,0,2$. Determine the stability of the critical points in each case.
Solution: If $a<0, y^{\prime}=-|a| y-y^{4}$, so that $y^{\prime}<0$ if $y<-\left|a^{1 / 3}\right|, y^{\prime}>0$ if $-\left|a^{1 / 3}\right|<y<0$, and $y^{\prime}<0$ if $y>0$. If $a=0$, there is only one critical point, $y=0$, and $y^{\prime}=-y^{4}<0$ for all $y \neq 0$. If $a>0, y^{\prime}=a y-y^{4}<0$ if $y<0, y^{\prime}>0$ if $0<y<a^{1 / 3}$, and $y^{\prime}<0$ if $y>a^{1 / 3}$. This gives the three phase lines shown below.

Thus, if $a<0$, the critical point $y=a^{1 / 3}$ is unstable and $y=0$ is asymptotically stable. If $a=0, y=0$ is unstable (or semi-stable). If $a>0, y=a^{1 / 3}$ is asymptotically stable and $y=0$ is unstable.
c. [4 points] Sketch a bifurcation diagram that shows the position of the critical points as a function of a in the $a y$-plane.
Solution: The bifurcation diagram is shown below. We indicate stable critical points with thick black curves (these are $y=0$ for $a<0$, and $y=a^{1 / 3}$ for $a>0$, and unstable ones with dashed curves (these are $y=-|a|^{1 / 3}$ for $a<0$ and $y=0$ for $a>0$).

