- 4. [12 points] For each of the following give an example, as indicated. It may be useful to note that the eigenvalues and eigenvectors of the matrix $\mathbf{A} = \begin{pmatrix} 0 & 2 \\ -1 & 3 \end{pmatrix}$ are $\lambda = 1$, $\mathbf{v} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and
 - $\lambda = 2, \mathbf{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$

a. [3 points] Give an example of a linear first-order equation that is not separable.

Solution: There are many possible answers; one is

$$y' + ty = \sin(t).$$

Note that any autonomous equation is necessarily separable.

b. [3 points] Give two distinct, non-zero solutions \mathbf{x}_1 and \mathbf{x}_2 to the system $\mathbf{x}' = \begin{pmatrix} 0 & 2 \\ -1 & 3 \end{pmatrix} \mathbf{x}$ for which $\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2$ is not a general solution to the system.

Solution: This just requires that we have two linearly dependent solutions. Using the eigenvalues above, one solution is $\mathbf{x}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t}$ and a second, linearly dependent, solution is $\mathbf{x}_2 = \begin{pmatrix} 2 \\ 2 \end{pmatrix} e^{2t}$.

c. [3 points] Give a 2×2 matrix **B**, with all non-zero entries, for which $\mathbf{Bx} = \mathbf{0}$ has an infinite number of solutions.

Solution: Note that $\mathbf{x} = \mathbf{0}$ is always a solution, so we need only for **B** to be singular that is, det(**B**) = 0. If $\mathbf{B} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, this requires that ac - bd = 0. One such matrix is $\mathbf{B} = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$.

d. [3 points] Give three different vectors, \mathbf{w}_1 , \mathbf{w}_2 , and \mathbf{w}_3 , for which $\begin{pmatrix} 0 & 2 \\ -1 & 3 \end{pmatrix} \mathbf{w}_j = k \mathbf{w}_j$, for some k. (The value of k need not be the same for all three vectors.)

Solution: This is just asking for an eigenvector-eigenvalue pair for the matrix. From above, we may use k = 1 and $\mathbf{w}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, k = 2 and $\mathbf{w}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, and k = 1 or k = 2 and some multiple of the corresponding eigenvector, for example, k = 1 and $\mathbf{w}_3 = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$. We could also take k = 1 and three different multiples of $\mathbf{v} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}^T$.