4. [12 points] For each of the following give an example, as indicated. It may be useful to note that the eigenvalues and eigenvectors of the matrix $\mathbf{A}=\left(\begin{array}{cc}0 & 2 \\ -1 & 3\end{array}\right)$ are $\lambda=1, \mathbf{v}=\binom{2}{1}$ and $\lambda=2, \mathbf{v}=\binom{1}{1}$.
a. [3 points] Give an example of a linear first-order equation that is not separable.

Solution: There are many possible answers; one is

$$
y^{\prime}+t y=\sin (t) .
$$

Note that any autonomous equation is necessarily separable.
b. [3 points] Give two distinct, non-zero solutions \mathbf{x}_{1} and \mathbf{x}_{2} to the system $\mathbf{x}^{\prime}=\left(\begin{array}{cc}0 & 2 \\ -1 & 3\end{array}\right) \mathbf{x}$ for which $\mathbf{x}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}$ is not a general solution to the system.
Solution: This just requires that we have two linearly dependent solutions. Using the eigenvalues above, one solution is $\mathbf{x}_{1}=\binom{1}{1} e^{2 t}$ and a second, linearly dependent, solution is $\mathbf{x}_{2}=\binom{2}{2} e^{2 t}$.
c. [3 points] Give a 2×2 matrix \mathbf{B}, with all non-zero entries, for which $\mathbf{B x}=\mathbf{0}$ has an infinite number of solutions.
Solution: Note that $\mathbf{x}=\mathbf{0}$ is always a solution, so we need only for \mathbf{B} to be singularthat is, $\operatorname{det}(\mathbf{B})=0$. If $\mathbf{B}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, this requires that $a c-b d=0$. One such matrix is $\mathbf{B}=\left(\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right)$.
d. [3 points] Give three different vectors, $\mathbf{w}_{1}, \mathbf{w}_{2}$, and \mathbf{w}_{3}, for which $\left(\begin{array}{cc}0 & 2 \\ -1 & 3\end{array}\right) \mathbf{w}_{j}=k \mathbf{w}_{j}$, for some k. (The value of k need not be the same for all three vectors.)
Solution: This is just asking for an eigenvector-eigenvalue pair for the matrix. From above, we may use $k=1$ and $\mathbf{w}_{1}=\binom{2}{1}, k=2$ and $\mathbf{w}_{2}=\binom{1}{1}$, and $k=1$ or $k=2$ and some multiple of the corresponding eigenvector, for example, $k=1$ and $\mathbf{w}_{3}=\binom{4}{2}$. We could also take $k=1$ and three different multiples of $\mathbf{v}=\left(\begin{array}{ll}2 & 1\end{array}\right)^{T}$.

