5. [16 points] Recall that the van der Pol equation we studied in lab 1 is given by

$$
x^{\prime \prime}+\mu f^{\prime}(x) x^{\prime}+x=0
$$

or, as a system in x and $y=x^{\prime}$,

$$
x^{\prime}=y, \quad y^{\prime}=-x-\mu f^{\prime}(x) y
$$

for some function $f^{\prime}(x)$. We assume that $\mu>0$.
a. [3 points] Show that for any choice of $f^{\prime}(x)$, the only critical point of the system formulation of the van der Pol equation is $(0,0)$.

Solution: At a critical point, $x^{\prime}=y^{\prime}=0$. Thus, from the first equation, $y=0$. Then, from the second, $y^{\prime}=0=-x-\mu f^{\prime}(x) \cdot 0$, and $x=0$ as well.
b. [4 points] Suppose that the Taylor expansion of $f^{\prime}(x)$ around $x=0$ is $f^{\prime}(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=$ $a_{0}+a_{1} x+\cdots$. Use this expansion to linearize your system. Your linear system will involve the coefficients a_{n}.
Solution: Note that the first equation is already linear. The second is $y^{\prime}=-x-\mu\left(a_{0}+\right.$ $\left.a_{1} x+\cdots\right) y$, so that, dropping nonlinear terms, the linear system is

$$
\binom{x}{y}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-1 & -\mu a_{0}
\end{array}\right)\binom{x}{y}
$$

Problem 5, continued. We are considering the van der Pol system.
c. [5 points] Suppose that the system you obtained in (b) is $x^{\prime}=-a_{0} \mu x-y, y^{\prime}=x$. For what value or values of a_{0} will the phase portrait for this system have only one straight-line of solution trajectories? No straight-line trajectories? Explain.
Solution: There is a single straight-line solution if the coefficient matrix has a repeated eigenvalue, and no straight-line solutions if the eigenvalues are complex. Here, eigenvalues are given by

$$
\operatorname{det}\left(\left(\begin{array}{cc}
-\mu a_{0}-\lambda & -1 \\
1 & -\lambda
\end{array}\right)\right)=\lambda^{2}+\left(\mu a_{0}\right) \lambda+1=\left(\lambda+\frac{1}{2} \mu a_{0}\right)^{2}+1-\frac{1}{4} \mu^{2} a_{0}^{2}=0
$$

This gives $\lambda=-\frac{1}{2} \mu a_{0} \pm \frac{1}{2} \sqrt{\frac{1}{4} \mu^{2} a_{0}^{2}-1}$. Thus, there will be a single straight-line solution if $a_{0}= \pm \frac{2}{\mu}$, and no straight-line solutions if $\left|a_{0}\right|<\frac{2}{\mu}$, so that $\frac{1}{4} \mu a_{0}^{2}-1<0$.
d. [4 points] When a_{0} is picked so that there is a single straight-line of solution trajectories in the phase portrait for this system, give an initial condition that will result in a straight-line trajectory in the phase plane.
Solution: This is when $a_{0}= \pm \frac{2}{\mu}$, so that $\lambda=-\frac{1}{2} \mu a_{0}=\mp 1$. If $a_{0}=\frac{2}{\mu}$, the eigenvector satisfies the equation $\left(\begin{array}{cc}-1 & -1 \\ 1 & 1\end{array}\right)\binom{v_{1}}{v_{2}}=\mathbf{0}$, so that $\mathbf{v}=\binom{1}{-1}$. Thus any initial condition on the line $y=-x$ will converge along that line to the origin.

