6. [15 points] Find real-valued solutions to each of the following, as indicated. Where possible, find explicit solutions.
a. [7 points] Find the general solution to the Gompertz equation, $\frac{d y}{d t}=r y \ln \left(\frac{K}{y}\right)$.

Solution: We rewrite this using rules of logarithms as $\frac{d y}{d t}=r y(\ln (K)-\ln (y))$, and separate to have

$$
\frac{d y / d t}{y(\ln (y)-\ln (K))}=-r
$$

Integrating both sides, we have

$$
\ln |\ln (y)-\ln (K)|=-r t+\hat{C}
$$

so that $\ln (y)-\ln (K)=C e^{-r t}$ (with $C= \pm e^{\hat{C}}$). Adding $\ln (K)$ to both sides and exponentiating again,

$$
y=K e^{C \exp (-r t)}
$$

b. [8 points] Solve $y^{\prime}=3 t-\frac{t}{1+t^{2}} y$, with $y(0)=3$.

Solution: This is linear and not separable. We rewrite it in standard form to get $y^{\prime}+\frac{t}{1+t^{2}} y=3 t$, and an integrating factor is $\mu=\exp \left(\int t /\left(1+t^{2}\right) d t\right)=\exp \left(\ln \left(1+t^{2}\right) / 2=\right.$ $\sqrt{1+t^{2}}$. Multiplying by μ, we have

$$
\left(y \sqrt{1+t^{2}}\right)^{\prime}=3 t \sqrt{1+t^{2}}
$$

so that on integrating both sides, $y \sqrt{1+t^{2}}=\left(1+t^{2}\right)^{3 / 2}+C$, and

$$
y=1+t^{2}+\frac{C}{\sqrt{1+t^{2}}}
$$

With $y(0)=3$, we have $y(0)=3=1+C$, and $C=2$, so

$$
y=1+t^{2}+\frac{2}{\sqrt{1+t^{2}}}
$$

