7. [15 points] Find explicit, real-valued solutions to each of the following, as indicated.
a. [7 points] Find the general solution to the system $x^{\prime}=y, y^{\prime}=2 x+y$.

Solution: Written as a matrix system, the coefficient matrix on the right-hand side is $\mathbf{A}=\left(\begin{array}{ll}0 & 1 \\ 2 & 1\end{array}\right)$, so that eigenvalues satisfy

$$
\operatorname{det}\left(\left(\begin{array}{cc}
-\lambda & 1 \\
2 & 1-\lambda
\end{array}\right)\right)=\lambda^{2}-\lambda-2=(\lambda-2)(\lambda+1)=0 .
$$

Thus $\lambda=-1$ or $\lambda=2$. If $\lambda=-1$, the eigenvector satisfies $\left(\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right) \mathbf{v}=\mathbf{0}$, so that $\mathbf{v}=$ $\left(\begin{array}{ll}1 & -1\end{array}\right)^{T}$ (or any nonzero constant multiple of this). If $\lambda=2$, we have $\left(\begin{array}{cc}-2 & 1 \\ 2 & -1\end{array}\right) \mathbf{v}=\mathbf{0}$, so that $\mathbf{v}=\left(\begin{array}{ll}1 & 2\end{array}\right)^{T}$ (or any constant multiple thereof). Thus the general solution is

$$
\binom{x}{y}=c_{1}\binom{1}{-1} e^{-t}+c_{2}\binom{1}{2} e^{2 t}=\binom{c_{1} e^{-t}+c_{2} e^{2 t}}{-c_{1} e^{-t}+2 c_{2} e^{2 t}} .
$$

b. [8 points] Solve $\mathbf{x}^{\prime}=\left(\begin{array}{cc}0 & 1 \\ -2 & 2\end{array}\right) \mathbf{x}, \mathbf{x}(0)=\binom{0}{2}$.

Solution: Eigenvalues of the coefficient matrix are given by

$$
\operatorname{det}\left(\left(\begin{array}{cc}
-\lambda & 1 \\
-2 & 2-\lambda
\end{array}\right)\right)=\lambda^{2}-2 \lambda+2=(\lambda-1)^{2}+1=0
$$

Thus $\lambda=1 \pm i$. We consider $\lambda=1+i$, and use it to obtain two linearly independent realvalued solutions. In this case, the eigenvector satisfies $\left(\begin{array}{cc}-1-i & 1 \\ -2 & 1-i\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0}$, so that one choice is $\mathbf{v}=\left(\begin{array}{ll}1 & 1+i\end{array}\right)^{T}$. (Using the second equation gives $\mathbf{v}=\left(\begin{array}{ll}1-i & 2\end{array}\right)^{T}$. $)$ We write the corresponding complex-valued solution and obtain real-valued solutions by taking the real and imaginary parts:

$$
\mathbf{x}=\binom{e^{t}(\cos (t)+i \sin (t))}{e^{t}(\cos (t)+i \sin (t)+i \cos (t)-\sin (t))},
$$

so that a general solution is

$$
\mathbf{x}=c_{1}\binom{\cos (t)}{\cos (t)-\sin (t)} e^{t}+c_{2}\binom{\sin (t)}{\cos (t)+\sin (t)} e^{t} .
$$

We note that if $c_{1}=0, c_{2}=2$ the initial condition is satisfied; thus $\mathbf{x}=2\binom{\sin (t)}{\cos (t)+\sin (t)} e^{t}$.
With the second \mathbf{v}, above, the complex-valued form of and general solution for \mathbf{x} are $\mathbf{x}=$ $\binom{e^{t}(\cos (t)+i \sin (t)-i \cos (t)+\sin (t))}{e^{t}(2 \cos (t)+2 i \sin (t))}$ and $\mathbf{x}=c_{1}\binom{\cos (t)+\sin (t)}{2 \cos (t)} e^{t}+c_{2}\binom{-\cos (t)+\sin (t)}{2 \sin (t)} e^{t}$, respectively. In this case $c_{1}=c_{2}=1$ to give the solution above.

