6. [14 points] Consider a chemical reaction in which two chemicals X and Y combine to form a new compound Z. We write $X+Y \rightarrow Z$. Then the speed of the reaction (that is, the rate at which the compound Z appears) is proportional to product of the concentrations of the compounds X and Y. Because one molecule of each of X and Y are used for each molecule of Z that is created, this results in the differential equation

$$
\frac{d z}{d t}=\alpha\left(x_{0}-z\right)\left(y_{0}-z\right)
$$

where z is the concentration of Z, α is the rate constant for the reaction and x_{0} and y_{0} are the initial concentrations of X and Y. If we initially have none of compound Z, the initial condition is $z(0)=0$.
a. [7 points] Suppose that $0<\alpha<1$ and $0<x_{0}<y_{0}$. Without solving the equation, determine what you expect the long-term concentration of Z will be by doing a qualitative analysis of the given equation. (While you may confirm your conclusions by speaking to the chemistry, your answer should be grounded in the analysis of the differential equation.)
b. [7 points] Now suppose that $0<\alpha<1$ and $x_{0}=y_{0}>0$. How does your analysis of the equation from (a) change? Explain by doing a similar analysis.

