6. [14 points] Consider a chemical reaction in which two chemicals \(X \) and \(Y \) combine to form a new compound \(Z \). We write \(X + Y \rightarrow Z \). Then the speed of the reaction (that is, the rate at which the compound \(Z \) appears) is proportional to product of the concentrations of the compounds \(X \) and \(Y \). Because one molecule of each of \(X \) and \(Y \) are used for each molecule of \(Z \) that is created, this results in the differential equation

\[
\frac{dz}{dt} = \alpha (x_0 - z)(y_0 - z),
\]

where \(z \) is the concentration of \(Z \), \(\alpha \) is the rate constant for the reaction and \(x_0 \) and \(y_0 \) are the initial concentrations of \(X \) and \(Y \). If we initially have none of compound \(Z \), the initial condition is \(z(0) = 0 \).

(a) [7 points] Suppose that \(0 < \alpha < 1 \) and \(0 < x_0 < y_0 \). Without solving the equation, determine what you expect the long-term concentration of \(Z \) will be by doing a qualitative analysis of the given equation. (While you may confirm your conclusions by speaking to the chemistry, your answer should be grounded in the analysis of the differential equation.)

(b) [7 points] Now suppose that \(0 < \alpha < 1 \) and \(x_0 = y_0 > 0 \). How does your analysis of the equation from (a) change? Explain by doing a similar analysis.