7. [12 points] Each of the following has an answer that you can determine with minimal work. In each, A is a 2×2 real-valued matrix (but in each is a different matrix). Provide the answer, and give a two sentence explanation of how you obtained it.

a. [4 points] If $\mathbf{A}\begin{pmatrix} 1\\ 2 \end{pmatrix} = \begin{pmatrix} 3\\ 4 \end{pmatrix}$ and eigenvalues of \mathbf{A} are λ_1 and λ_2 , with corresponding eigenvectors \mathbf{v}_1 and \mathbf{v}_2 , then the general solution to $\mathbf{x}' = \mathbf{A}\mathbf{x} + \begin{pmatrix} 3\\ 4 \end{pmatrix}$ is

b. [4 points] If the only eigenvalue of **A** is $\lambda = -3$, with only one eigenvector, $\mathbf{v} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$, then as $t \to \infty$, the largest term in all solutions of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ will be

c. [4 points] If the eigenvalues of **A** are $\lambda = -3$ and $\lambda = 5$, with eigenvectors $\mathbf{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$, then the number of solutions **x** to $\mathbf{A}\mathbf{x} = \mathbf{0}$ is

and the number of solutions to Ax = 3x is