1. [15 points] Solve each of the following, finding explicit real-valued solutions as indicated.
a. [8 points] Find the solution to the initial value problem $\frac{y^{\prime}}{x^{3}+y}=\frac{1}{x}, y(1)=2$.

Solution: This is a linear problem, in standard form $y^{\prime}-\frac{1}{x} y=x^{2}$. The integrating factor is $\mu=e^{-\int \frac{1}{x} d x}=x^{-1}$, so after multiplying through by μ we have $\left(\frac{1}{x} y\right)^{\prime}=x$. Integrating and multiplying through by x gives $y=\frac{1}{2} x^{3}+C x$, so that with $y(1)=2$ we have $C=\frac{3}{2}$, and

$$
y=\frac{1}{2} x^{3}+\frac{3}{2} x
$$

b. [7 points] Find the general solution to $y^{\prime}+\frac{1}{t} y=\frac{1}{t y}$.

Solution: This is not linear, but can be separated. We have $y^{\prime}=\frac{1}{t}\left(\frac{1}{y}-y\right)$, so that $\frac{y^{\prime}}{\frac{1}{y}-y}=\frac{1}{t}$, or $\frac{y y^{\prime}}{1-y^{2}}=\frac{1}{t}$. We are able to integrate both sides, finding $-\frac{1}{2} \ln \left|1-y^{2}\right|=$ $\ln |t|+C^{\prime}$. Multiplying by -2 and using rules of logs, this is $\ln \left|1-y^{2}\right|=\ln \left(|t|^{-2}\right)+C^{\prime}$, so that, exponentiating and letting $C= \pm e^{C^{\prime}}, 1-y^{2}=C t^{-2}$. Thus

$$
y= \pm \sqrt{1-C t^{-2}}
$$

