- 1. [15 points] Solve each of the following, finding explicit real-valued solutions as indicated.
 - **a**. [8 points] Find the solution to the initial value problem $\frac{y'}{x^3 + y} = \frac{1}{x}$, y(1) = 2.

Solution: This is a linear problem, in standard form $y' - \frac{1}{x}y = x^2$. The integrating factor is $\mu = e^{-\int \frac{1}{x} dx} = x^{-1}$, so after multiplying through by μ we have $(\frac{1}{x}y)' = x$. Integrating and multiplying through by x gives $y = \frac{1}{2}x^3 + Cx$, so that with y(1) = 2 we have $C = \frac{3}{2}$, and

$$y = \frac{1}{2}x^3 + \frac{3}{2}x$$

b. [7 points] Find the general solution to $y' + \frac{1}{t}y = \frac{1}{ty}$.

Solution: This is not linear, but can be separated. We have $y' = \frac{1}{t}(\frac{1}{y} - y)$, so that $\frac{y'}{\frac{1}{y} - y} = \frac{1}{t}$, or $\frac{yy'}{1 - y^2} = \frac{1}{t}$. We are able to integrate both sides, finding $-\frac{1}{2}\ln|1 - y^2| = \ln|t| + C'$. Multiplying by -2 and using rules of logs, this is $\ln|1 - y^2| = \ln(|t|^{-2}) + C'$, so that, exponentiating and letting $C = \pm e^{C'}$, $1 - y^2 = Ct^{-2}$. Thus

$$y = \pm \sqrt{1 - Ct^{-2}}$$