2. [15 points] Solve each of the following, finding explicit real-valued solutions as indicated.
a. [8 points] Find the solution to the initial value problem $x^{\prime}=x+2 y, y^{\prime}=4 x+3 y$, $x(0)=-1, y(0)=8 .{ }^{1}$
Solution: In matrix form, this is $\binom{x}{y}^{\prime}=\left(\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right)\binom{x}{y}$. The eigenvalues of the coefficient matrix are given by $\operatorname{det}\left(\left(\begin{array}{cc}1-\lambda & 2 \\ 4 & 3-\lambda\end{array}\right)\right)=\lambda^{2}-4 \lambda-5=(\lambda-5)(\lambda+1)=0$. Thus $\lambda=5$ or $\lambda=-1$. If $\lambda=5$, eigenvectors satisfy $\left(\begin{array}{cc}-4 & 2 \\ 4 & -2\end{array}\right) \mathbf{v}=\mathbf{0}$, so that $\mathbf{v}=\binom{1}{2}$. Similarly, if $\lambda=-1$, eigenvectors satisfy $\left(\begin{array}{ll}2 & 2 \\ 4 & 4\end{array}\right) \mathbf{v}=\mathbf{0}$, so that $\mathbf{v}=\binom{-1}{1}$. The general solution is therefore

$$
\mathbf{x}=c_{1}\binom{1}{2} e^{5 t}+c_{2}\binom{-1}{1} e^{-t}
$$

Applying the initial conditions, we have $c_{1}-c_{2}=-1$ and $2 c_{1}+c_{2}=8$. Adding the two equations, $3 c_{1}=7$, so $c_{1}=\frac{7}{3}$ and $c_{2}=\frac{10}{3}$. Thus

$$
\mathbf{x}=\frac{7}{3}\binom{1}{2} e^{5 t}+\frac{10}{3}\binom{-1}{3} e^{-t}
$$

b. [7 points] Find the general solution to $\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{cc}2 & -2 \\ 1 & 0\end{array}\right)\binom{x_{1}}{x_{2}}$.

Solution: The eigenvalues of the coefficient matrix are given by $(2-\lambda)(-\lambda)+2=\lambda^{2}-$ $2 \lambda+2=(\lambda-1)^{2}+1=0$. Thus $\lambda=1 \pm i$. If $\lambda=1+i$, the components of the eigenvector satisfy (from the second row of the coefficient matrix) $v_{1}-(1+i) v_{2}=0$, so we may take $\mathbf{v}=\binom{1+i}{1}$. A complex-valued solution is therefore $\mathbf{x}=\binom{1+i}{1} e^{t}(\cos (t)+i \sin (t))$. Separating the real and imaginary parts of this, we have

$$
\mathbf{x}=c_{1}\binom{\cos (t)-\sin (t)}{\cos (2 t)} e^{t}+c_{2}\binom{\cos (t)+\sin (t)}{\sin (t)} e^{t} .
$$

Alternately, we could take $\mathbf{v}=\binom{2}{1-i}$, so that

$$
\mathbf{x}=c_{1}\binom{2 \cos (t)}{\cos (t)+\sin (t)} e^{t}+c_{2}\binom{2 \sin (t)}{-\cos (t)+\sin (t)} e^{t} .
$$

[^0]
[^0]: ${ }^{1}$ The original exam copy had $y^{\prime}(0)=8$; a correct solution may be obtained applying this as well.

