7. [12 points] Each of the following has an answer that you can determine with minimal work. In each, A is a 2×2 real-valued matrix (but in each is a different matrix). Provide the answer, and give a two sentence explanation of how you obtained it.

a. [4 points] If $\mathbf{A}\begin{pmatrix} 1\\ 2 \end{pmatrix} = \begin{pmatrix} 3\\ 4 \end{pmatrix}$ and eigenvalues of \mathbf{A} are λ_1 and λ_2 , with corresponding eigenvectors \mathbf{v}_1 and \mathbf{v}_2 , then the general solution to $\mathbf{x}' = \mathbf{A}\mathbf{x} + \begin{pmatrix} 3\\ 4 \end{pmatrix}$ is

$$\mathbf{x} = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t} - \begin{pmatrix} 1\\ 2 \end{pmatrix}$$

Solution: We see that $\mathbf{x}_c = -\begin{pmatrix} 1\\ 2 \end{pmatrix}$ is the equilibrium solution for the given equation. Letting $\mathbf{x} = \mathbf{u} + \mathbf{x}_c$ will result in \mathbf{u} solving the homogeneous equation $\mathbf{u}' = \mathbf{A}\mathbf{u}$, so that $\mathbf{u} = c_1\mathbf{v}_1e^{\lambda_1t} + c_2\mathbf{v}_2e^{\lambda_2t}$, which gives the indicated general solution.

b. [4 points] If the only eigenvalue of **A** is $\lambda = -3$, with only one eigenvector, $\mathbf{v} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$, then as $t \to \infty$, the largest term in all solutions of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ will be

$$\mathbf{x} = c t \mathbf{v} e^{-3t} = c t \begin{pmatrix} 4\\ 3 \end{pmatrix} e^{-3t}$$

Solution: The general solution to $\mathbf{x}' = \mathbf{A}\mathbf{x}$ is $\mathbf{x} = c_1(\mathbf{v}t + \mathbf{w})e^{\lambda t} + c_2\mathbf{v}e^{\lambda t}$. The dominant term in this expression is $\mathbf{x} = c_1\mathbf{v}te^{\lambda t}$.

c. [4 points] If the eigenvalues of **A** are $\lambda = -3$ and $\lambda = 5$, with eigenvectors $\mathbf{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$, then the number of solutions \mathbf{x} to $\mathbf{A}\mathbf{x} = \mathbf{0}$ is

Exactly one: x = 0.

and the number of solutions to Ax = 3x is

Exactly one.

Solution: Note that if **A** doesn't have an eigenvalue $\lambda = 0$, then its determinant must be nonzero, so $\mathbf{A}\mathbf{x} = \mathbf{0}$ has the unique solution $\mathbf{x} = \mathbf{0}$. Similarly, $\mathbf{A}\mathbf{x} = k\mathbf{x}$ has multiple solutions only if k is an eigenvalue, which isn't the case here.