7. [12 points] Each of the following has an answer that you can determine with minimal work. In each, $\mathbf{A}$ is a $2 \times 2$ real-valued matrix (but in each is a different matrix). Provide the answer, and give a two sentence explanation of how you obtained it.
a. [4 points] If $\mathbf{A}\binom{1}{2}=\binom{3}{4}$ and eigenvalues of $\mathbf{A}$ are $\lambda_{1}$ and $\lambda_{2}$, with corresponding eigenvectors $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$, then the general solution to $\mathbf{x}^{\prime}=\mathbf{A x}+\binom{3}{4}$ is

$$
\mathbf{x}=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}-\binom{1}{2}
$$

Solution: We see that $\mathbf{x}_{c}=-\binom{1}{2}$ is the equilibrium solution for the given equation. Letting $\mathbf{x}=\mathbf{u}+\mathbf{x}_{c}$ will result in $\mathbf{u}$ solving the homogeneous equation $\mathbf{u}^{\prime}=\mathbf{A u}$, so that $\mathbf{u}=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}$, which gives the indicated general solution.
b. [4 points] If the only eigenvalue of $\mathbf{A}$ is $\lambda=-3$, with only one eigenvector, $\mathbf{v}=\binom{4}{3}$, then as $t \rightarrow \infty$, the largest term in all solutions of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ will be

$$
\mathbf{x}=\operatorname{ct} \mathbf{v} e^{-3 t}=c t\binom{4}{3} e^{-3 t}
$$

Solution: The general solution to $\mathbf{x}^{\prime}=\mathbf{A x}$ is $\mathbf{x}=c_{1}(\mathbf{v} t+\mathbf{w}) e^{\lambda t}+c_{2} \mathbf{v} e^{\lambda t}$. The dominant term in this expression is $\mathbf{x}=c_{1} \mathbf{v} t e^{\lambda t}$.
c. [4 points] If the eigenvalues of $\mathbf{A}$ are $\lambda=-3$ and $\lambda=5$, with eigenvectors $\mathbf{v}=\binom{1}{1}$ and $\mathbf{v}=\binom{-1}{1}$, then the number of solutions $\mathbf{x}$ to $\mathbf{A x}=\mathbf{0}$ is

## Exactly one: $\mathrm{x}=\mathbf{0}$.

and the number of solutions to $\mathbf{A x}=3 \mathbf{x}$ is

## Exactly one.

Solution: Note that if A doesn't have an eigenvalue $\lambda=0$, then its determinant must be nonzero, so $\mathbf{A x}=\mathbf{0}$ has the unique solution $\mathbf{x}=\mathbf{0}$. Similarly, $\mathbf{A x}=k \mathbf{x}$ has multiple solutions only if $k$ is an eigenvalue, which isn't the case here.

