1. Choose from among the direction fields below which belongs to each of these ODE (1 point each, no justification needed for this problem):
(a) $y^{\prime}=y^{2}-3 y+1$. Direction Field \# 5

Autonomous, so the segment slopes can't depend on t. Also there are two roots of $y^{2}-3 y+1$ so equilibrium solutions should be present.
(b) $y^{\prime}=y^{2}+y+1$. Direction Field \# 2

Autonomous again, but now there are no (real) roots of $y^{2}+y+1$ so no equilibria.
(c) $y^{\prime}=1+(y-t)^{2}$. Direction Field \# \square
Slope depends on both y and t, but is always ≥ 1, so no horizontal tangents.
(d) $y^{\prime}=1-(y-t)^{2}$. Direction Field \# \square 6 Slope depends on both y and t, but horizontal tangents occur at points where $y=t \pm 1$.
(e) $y^{\prime}=t^{2}-3 t+1$. Direction Field \#

Slope depends on t only; should see horizontal tangents along two vertical lines (roots of $t^{2}-$ $3 t+1$).

Direction Field \#3

Direction Field \# 5

Direction Field \# 6

