- 3. Choose from among the given phase portraits the phase portrait for the system $\mathbf{x}' = \begin{pmatrix} 2 & a \\ 4 & 1 \end{pmatrix} \mathbf{x}$ for each given value of *a* (1 point each, no justification needed for this problem):
 - (a) a = 0. Phase Portrait # 2 The eigenvalues in general are $\lambda = \frac{1}{2}(3 \pm \sqrt{16a + 1})$. Taking a = 0 gives $\lambda = 1, 2$ so we have an unstable node.
 - (b) $a = \frac{15}{16}$. Phase Portrait # 4 For $a = \frac{15}{16}$ the eigenvalues are $\lambda = -\frac{1}{2}, \frac{7}{2}$, so we have a saddle point.
 - (c) $a = -\frac{26}{16}$. Phase Portrait # Taking $a = -\frac{26}{16}$ the eigenvalues are $\lambda = \frac{1}{2}(3 \pm 5i)$, so we have an unstable spiral point.

