3. Choose from among the given phase portraits the phase portrait for the system $\mathbf{x}^{\prime}=\left(\begin{array}{ll}2 & a \\ 4 & 1\end{array}\right) \mathbf{x}$ for each given value of a (1 point each, no justification needed for this problem):
(a) $a=0$. Phase Portrait \# 2

The eigenvalues in general are $\lambda=\frac{1}{2}(3 \pm \sqrt{16 a+1})$. Taking $a=0$ gives $\lambda=1,2$ so we have an unstable node.
(b) $a=\frac{15}{16}$. Phase Portrait \# \square
For $a=\frac{15}{16}$ the eigenvalues are $\lambda=-\frac{1}{2}, \frac{7}{2}$, so we have a saddle point.
(c) $a=-\frac{26}{16}$. Phase Portrait \# 1

Taking $a=-\frac{26}{16}$ the eigenvalues are $\lambda=\frac{1}{2}(3 \pm 5 \mathrm{i})$, so we have an unstable spiral point.

Phase Portrait \# 2

