4. (a) (4 points) Solve the initial-value problem \(x' = \frac{x^2}{t} + 3x^2t^2, \ x(-1) = \frac{1}{2}, \) for \(x = x(t). \)

Solution: separating the variables gives \(x^{-2} \, dx = (t^{-1} + 3t^2) \, dt \) so \(-x^{-1} = \ln(|t|) + t^3 + C. \)

Putting in \((t, x) = (-1, \frac{1}{2}) \) gives \(C = -1. \) So

\[
x(t) = \frac{1}{1 - t^3 - \ln(|t|)} = \frac{1}{1 - t^3 - \ln(-t)}.
\]

(b) (4 points) A general solution of the differential equation \(x' = \frac{t}{x} \) for \(x = x(t) \) has the implicit form \(x^2 - t^2 = C. \) Find the (maximal) interval of existence of the solution with initial condition \(x(5) = 4. \)

Solution: putting \(t = t_0 = 5 \) and \(x = x_0 = 4 \) gives \(C = -9. \) Taking square roots, there are then two possible solutions for this value of \(C, \) namely \(x(t) = \pm \sqrt{t^2 - 9}. \) To have \(x(5) = 4 \) then requires picking the positive sign so \(x(t) = \sqrt{t^2 - 9}. \) This is real and differentiable for \(t < -3 \) and for \(t > 3, \) only the latter of which is an interval containing \(t_0 = 5. \) So the interval of existence is

\[(3, +\infty). \]