4. (a) (4 points) Solve the initial-value problem $x^{\prime}=x^{2} / t+3 x^{2} t^{2}, x(-1)=\frac{1}{2}$, for $x=x(t)$.

Solution: separating the variables gives $x^{-2} \mathrm{~d} x=\left(t^{-1}+3 t^{2}\right) \mathrm{d} t$ so $-x^{-1}=\ln (|t|)+t^{3}+C$. Putting in $(t, x)=\left(-1, \frac{1}{2}\right)$ gives $C=-1$. So

$$
x(t)=\frac{1}{1-t^{3}-\ln (|t|)}=\frac{1}{1-t^{3}-\ln (-t)} .
$$

(b) (4 points) A general solution of the differential equation $x^{\prime}=t / x$ for $x=x(t)$ has the implicit form $x^{2}-t^{2}=C$. Find the (maximal) interval of existence of the solution with initial condition $x(5)=4$.
Solution: putting $t=t_{0}=5$ and $x=x_{0}=4$ gives $C=-9$. Taking square roots, there are then two possible solutions for this value of $C$, namely $x(t)= \pm \sqrt{t^{2}-9}$. To have $x(5)=4$ then requires picking the positive sign so $x(t)=\sqrt{t^{2}}-9$. This is real and differentiable for $t<-3$ and for $t>3$, only the latter of which is an interval containing $t_{0}=5$. So the interval of existence is

$$
(3,+\infty)
$$

