5. (4 points) Consider the initial-value problem for $y(t): y^{\prime}=\cos (\pi y)+1, y(3)=-2$. Does $\lim _{t \rightarrow+\infty} y(t)$ exist? If so, what is it?
Solution: the equilibria are the roots of $\cos (\pi y)+1$ which are all of the odd integers. Since $\cos (\pi y)+$ $1 \geq 0$, each of these roots is a semistable equilibrium, attractive from the left and repulsive on the right. So by the phase line method and the fact that $y(3)=-2$ lies halfway between two equilibria,

$$
\lim _{t \rightarrow+\infty} y(t)=-1
$$

