6. Consider the system with parameter h

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
-3 & 1 \\
-1 & h
\end{array}\right) \mathbf{x}
$$

for a vector function $\mathbf{x}=\mathbf{x}(t)$.
(a) (4 points) For which value(s) of h is there a solution of this system of the form

$$
\mathbf{x}(t)=\binom{(a t+b) \mathrm{e}^{-4 t}}{(t+c) \mathrm{e}^{-4 t}}
$$

for some constants a, b, c ? (No need to find a, b, c, just h.)
Solution: We need that the coefficient matrix has a repeated eigenvalue $\lambda=-4$. The characteristic equation for the problem reads $(h-\lambda)(-3-\lambda)+1=0$ or $\lambda^{2}+(3-h) \lambda+1-3 h=0$. The discriminant is $(3-h)^{2}-4+12 h=h^{2}+6 h+5=(h+5)(h+1)$. So we have a repeated root if either $h=-5$ or $h=-1$. In those cases, the repeated root is $\lambda=(h-3) / 2$ which is -4 only for $h=-5$ (it is -2 if $h=-1$ instead). Therefore the only possible value of h is

$$
h=-5 .
$$

Another approach would be to first insist that $\lambda=-4$ is an eigenvalue. Since the characteristic equation is linear in h, this automatically and immediately yields $h=-5$. However, one should then confirm that this eigenvalue is repeated when $h=-5$ because otherwise the solution does not include any term proportional to $\mathrm{e}^{-4 t}$. A third approach is to deduce two conditions (for $\lambda=-4$ to be an eigenvalue and for it to be repeated) by simply equating the characteristic polynomial to $(\lambda+4)^{2}$, and then check that all the coefficients of powers of λ match if and only if $h=-5$.
(b) (4 points) Suppose that $h=-3$. Solve the initial-value problem for the system with initial condition

$$
\mathbf{x}(0)=\binom{1}{1} .
$$

Solution: The characteristic equation reads $\lambda^{2}+6 \lambda+10=0$ which has complex-conjugate roots $\lambda=-3 \pm \mathrm{i}$. An eigenvector for $\lambda=-3+\mathrm{i}$ is $\mathbf{v}=\binom{1}{\mathrm{i}}$, so the general solution is $c_{1} \mathbf{u}(t)+$ $c_{2} \mathbf{w}(t)$, where $\mathbf{u}(t)$ and $\mathbf{w}(t)$ are the real and imaginary parts of the vector solution $\mathrm{e}^{-3 t} \mathrm{e}^{\mathrm{i} t} \mathbf{v}=$ $\mathrm{e}^{-3 t}(\cos (t)+\mathrm{i} \sin (t)) \mathbf{v}$. Therefore $\mathbf{u}(t)=\mathrm{e}^{-3 t}\binom{\cos (t)}{-\sin (t)}$ and $\mathbf{w}(t)=\mathrm{e}^{-3 t}\binom{\sin (t)}{\cos (t)}$. At $t=0$ the general solution reads $c_{1}\binom{1}{0}+c_{2}\binom{0}{1}$, so we need $c_{1}=c_{2}=1$. The solution is therefore

$$
\mathbf{x}(t)=\mathrm{e}^{-3 t}\binom{\cos (t)+\sin (t)}{\cos (t)-\sin (t)} .
$$

