6. Consider the system with parameter *h*

$$\mathbf{x}' = \begin{pmatrix} -3 & 1\\ -1 & h \end{pmatrix} \mathbf{x}$$

for a vector function $\mathbf{x} = \mathbf{x}(t)$.

(a) (4 points) For which value(s) of *h* is there a solution of this system of the form

$$\mathbf{x}(t) = \begin{pmatrix} (at+b)\mathbf{e}^{-4t} \\ (t+c)\mathbf{e}^{-4t} \end{pmatrix}$$

for some constants *a*, *b*, *c*? (No need to find *a*, *b*, *c*, just *h*.)

Solution: We need that the coefficient matrix has a repeated eigenvalue $\lambda = -4$. The characteristic equation for the problem reads $(h - \lambda)(-3 - \lambda) + 1 = 0$ or $\lambda^2 + (3 - h)\lambda + 1 - 3h = 0$. The discriminant is $(3 - h)^2 - 4 + 12h = h^2 + 6h + 5 = (h + 5)(h + 1)$. So we have a repeated root if either h = -5 or h = -1. In those cases, the repeated root is $\lambda = (h - 3)/2$ which is -4 only for h = -5 (it is -2 if h = -1 instead). Therefore the only possible value of h is

$$h = -5.$$

Another approach would be to first insist that $\lambda = -4$ is an eigenvalue. Since the characteristic equation is linear in *h*, this automatically and immediately yields h = -5. However, one should then confirm that this eigenvalue is repeated when h = -5 because otherwise the solution does not include any term proportional to te^{-4t} . A third approach is to deduce two conditions (for $\lambda = -4$ to be an eigenvalue and for it to be repeated) by simply equating the characteristic polynomial to $(\lambda + 4)^2$, and then check that all the coefficients of powers of λ match if and only if h = -5.

(b) (4 points) Suppose that h = -3. Solve the initial-value problem for the system with initial condition

$$\mathbf{x}(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

Solution: The characteristic equation reads $\lambda^2 + 6\lambda + 10 = 0$ which has complex-conjugate roots $\lambda = -3 \pm i$. An eigenvector for $\lambda = -3 + i$ is $\mathbf{v} = \begin{pmatrix} 1 \\ i \end{pmatrix}$, so the general solution is $c_1 \mathbf{u}(t) + c_2 \mathbf{w}(t)$, where $\mathbf{u}(t)$ and $\mathbf{w}(t)$ are the real and imaginary parts of the vector solution $e^{-3t}e^{it}\mathbf{v} = e^{-3t}(\cos(t) + i\sin(t))\mathbf{v}$. Therefore $\mathbf{u}(t) = e^{-3t}\begin{pmatrix} \cos(t) \\ -\sin(t) \end{pmatrix}$ and $\mathbf{w}(t) = e^{-3t}\begin{pmatrix} \sin(t) \\ \cos(t) \end{pmatrix}$. At t = 0 the general solution reads $c_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, so we need $c_1 = c_2 = 1$. The solution is therefore

$$\mathbf{x}(t) = e^{-3t} \begin{pmatrix} \cos(t) + \sin(t) \\ \cos(t) - \sin(t) \end{pmatrix}.$$