4. [10 points] Suppose we launch a 16 lb bowling ball from a catapult, as suggested in the figure to the right. In this problem we consider the vertical velocity $v$ of the bowling ball. We shall assume that the initial vertical velocity is $45 \mathrm{ft} / \mathrm{s}$, and that the bowling ball is released from a height of 50 ft . Gravity provides a downward acceleration of $32 \mathrm{ft} / \mathrm{s}^{2}$, and the force of air resistance is proportional to the square of the velocity
 with constant of proportionality $k=0.0005$. With these assumptions, the bowling ball reaches its apogee (highest point) of $h=80.7 \mathrm{ft}$ at $t=1.38$ seconds.
a. [6 points] Write an initial value problem for the vertical velocity of the bowling ball on its ascent. Note that you do not need to solve this problem.
b. [4 points] Write an initial value problem for the vertical velocity of the bowling ball on its descent. Note that you do not need to solve this problem.
