4. [10 points] Suppose we launch a 16 lb bowling ball from a catapult, as suggested in the figure to the right. In this problem we consider the vertical velocity v of the bowling ball. We shall assume that the initial vertical velocity is $45 \mathrm{ft} / \mathrm{s}$, and that the bowling ball is released from a height of 50 ft . Gravity provides a downward acceleration of $32 \mathrm{ft} / \mathrm{s}^{2}$, and the force of air resistance is proportional to the square of the velocity
 with constant of proportionality $k=0.0005$. With these assumptions, the bowling ball reaches its apogee (highest point) of $h=80.7 \mathrm{ft}$ at $t=1.38$ seconds.
a. [6 points] Write an initial value problem for the vertical velocity of the bowling ball on its ascent. Note that you do not need to solve this problem.
Solution: In this case we have $v(0)=45$. We can set up a differential equation by taking $m a=m v^{\prime}=\sum$ (forces). The forces are gravity $(=-m g$, so that it points downward) and air resistance $\left(=-0.0005 v^{2}\right.$, similarly pointing downward), so that

$$
m v^{\prime}=-32 m-0.0005 v^{2}
$$

The mass is $m=16 \mathrm{lb} / 32=1 / 2$ slugs, so that this becomes

$$
v^{\prime}=-32-0.001 v^{2}
$$

b. [4 points] Write an initial value problem for the vertical velocity of the bowling ball on its descent. Note that you do not need to solve this problem.
Solution: In this case, the velocity will be negative and so the force of air resistance must point upwards. Our differential equation is

$$
v^{\prime}=-32+0.001 v^{2}
$$

and we apply the initial condition $v(1.38)=0$.

